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Prior work

Throughout the life cycle of an outbreak, “triggers” for starting
and stopping interventions should be:

1. Predictive of outcomes of policy interest
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Throughout the life cycle of an outbreak, “triggers” for starting
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1. Predictive of outcomes of policy interest
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Prior work

Throughout the life cycle of an outbreak, “triggers” for starting
and stopping interventions should be:

Predictive of outcomes of policy interest

2. Account for the context-specific risk and costs of acting false
negative and false positive signals

3. Transparently and regularly updated

Community Risk Metrics Special Populations
1. PNAS 2023 1. Schools: JAMA NO 2022, Annals 2021,
2. Annals of IM 2022 S Alecap022
3. PNAS 2021 2. Nursing homes: JAMA HF 2024

3. “High" respiratory disease season guidance
for HC facilities (w/RIDOH, in progress)
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https://www.acpjournals.org/doi/10.7326/M22-0803
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https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2789005
https://www.acpjournals.org/doi/10.7326/M21-0600
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Disclosure

I am not a forecaster.
Forecasting seems very hard.

But we thought it might be valuable to transport a
decision-analytic framework to this context.



Back to hurricanes...

Categories of hurricane

Category 1 Category 2 ‘ Category 3 ‘ Category 4 Category 5

wind  74-95mph | 96-fMomph | 11-130mph | 131-155mph | Over 155mph
Storm
surge 4-5ft 6-8ft ‘ 9-12ft ‘ 13-16ft Over 18ft

e
1

Minimal: No real | Moderate: Material | Extensive:
structural damage; | damage to Structural damage
some flooding | buildings; small to small houses;

| craft break moorings | inland flooding

Source: Saffir Simpson scale

Rl e

kl\ 'f‘

€
Extreme: Major Catastrophic: Massive
structural damage & | damage to buildings;
heavy flooding; small structures

evacuation necessary | blown over or away




Back to hurricanes...

Scenario 1:

Category 1 - Zone 1: All areas of Pleasure Island along with individuals living in manufactured homes, and those living in low lying flood prone
areas countywide. (Pleasure Island consists of all areas south of the Intra-coastal Canal to include Fort Morgan, Gulf Shores, Orange Beach
and Ono Island.)

Category 2 - Zone 1 & 2: All areas south of State Hwy 98 and the area on the Eastern Shore that is South of Interstate 10 and West of State
Hwy 98. Additionally, all individuals living in proximity to the Fish, Styx, Blackwater and Perdido Rivers and all individuals living in manufactured
homes, and those living in low lying flood prone areas countywide.

Category 3 - Zones 1 through 3: All areas south of State Hwy 98 and the area on the Eastern Shore west of State Hwy 98, and the area west
of State Hwy 225 and west of Hwy 59 North of Stockton to the Baldwin/Monroe County line. Additionally, all individuals living in proximity to the
Fish, Styx, Blackwater and Perdido Rivers and all individuals living in manufactured homes, and those living in low lying flood prone areas
countywide.

Category 4 or 5 - Zones 1 through 4: All areas south of Interstate 10 and the area on the Eastern Shore west of State Hwy 225 and west of
Hwy 59 North of Stockton to the Baldwin/Monroe County line. Additionally, all individuals living in manufactured homes and those living in low
lying flood prone areas countywide.
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Category 4 or 5 - Zones 1 through 4: All areas south of Interstate 10 and the area on the Eastern Shore west of State Hwy 225 and west of
Hwy 59 North of Stockton to the Baldwin/Monroe County line. Additionally, all individuals living in manufactured homes and those living in low
lying flood prone areas countywide.

® Notification time varies (24-48
hours for Cat 1-3, 72 hours for
Cat 4-5)

® Similar guidance for
government, first responders
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Key principles

Forecast — Threshold — Recommendation/Action

There is some probability the threat materializes.

There is a cost of evacuating (which may or may not be
needed).

® There is a cost of staying put if a storm materializes.

Ideally, we choose recommendations accounting for these.

® Whether to cancel elective surgeries in a respiratory outbreak
® Whether to start an mpox vaccination strategy
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Popular forecast evaluation metrics

The most popular metric for forecast evaluation is weighted
interval score (WIS):

absolute error for probabilistic forecasts

1. considers both point estimate and uncertainty
— balances accuracy and sharpness

2. "strictly proper scoring rule”
— aligned with reporting best forecast

3. but...equally weights all points in time and can be difficult to
substantively interpret



Recent innovations

1. WIS of log-transformed estimates(Funk et. al., 2023)
2. Predicting shapes (Srivastava et. al., 2022, Srivastava et. al., 2023)

. Optimizing allocation of a continuous finite resource (Gerding
et. al., 2023)

10
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https://ieeexplore.ieee.org/abstract/document/10020895/
https://arxiv.org/abs/2309.03579
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Recent innovations

1. WIS of log-transformed estimates(Funk et. al., 2023)
2. Predicting shapes (Srivastava et. al., 2022, Srivastava et. al., 2023)

. Optimizing allocation of a continuous finite resource (Gerding
et. al., 2023)

...our questions were more basic.

10
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https://arxiv.org/abs/2309.03579
https://arxiv.org/abs/2312.16201
https://arxiv.org/abs/2312.16201

This work

What information would make forecasts most interpretable and
actionable to a decision-maker?

1. Propose simple forecast evaluation metrics tied to binary
“threshold” outcomes

2. Evaluate performance on COVID-19 case and hospitalization
predictions

3. Propose how to operationalize forecast error and uncertainty
in decision-making

11
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Metrics

We consider 3 types of metrics:

1. Trends: s the outcome monotonically increasing or
decreasing over the horizon?

2. Combined level/trend thresholds: (e.g., for cases: >20 per
100k & >100% of forecast date value, for hospitalizations
<10 per 100k & <100% of forecast date value)

3. Turning points: Monotonic increase followed by decrease (or
the converse)

® Also considered a “fuzzy” version of this (e.g. predicting peak
within 1-2 weeks)

Methods 13
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Decision analysis

Objective:

Maximize accuracy, weighting for preference over different error

types. We assume a decision-analytic framework.

Methods

Predicted Predicted
negative: positive:
(Yips =0) (Yw+3 =1)
True negative: | 0 So
(Yw+3 - O)
True positive: | D (1—a)D+
(Yw+3 = 1) Sl

14



Decision analysis

The expected cost of following a metric (M) is:

~ ~

CM)=PrY=1,Y=0)S,+ Pr(Y=0,Y=1)D +

expected cost: false positives  expected cost: false negatives

PrY=1,Y=1)((1—a)D+5,)

expected cost: true positives

Methods 15



Decision analysis

We can rearrange this:

C(M)=Pr(Y =1,Y = 0)S,+

Pr(Y =0,Y =1)(aD— S))+
Pr(Y =1)((1-—a)D+5))

constant across all metrics

Methods
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Decision analysis

We can rearrange this:

C(M) < pppSy +ppy(aD — Sy)
X ppp t PrNW;
where w is the ratio of the net benefit from taking action on a true
positive (D — S;) to costs incurred by unnecessary action in the

case of a false positive (S;)

Methods 17



Decision analysis

If we define relative costs of acting on false positives vs. negatives,
we can:

1. Set decision thresholds: Pick the optimal cutoff point for a
prediction rule from a probabilistic forecast.
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Quick note

Accuracy (and weighted accuracy) do not induce “strictly proper

scoring rules.”

Normalized Strictly Proper Scoring Rules
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Considerations for both fitting and scoring, but we focus on the

latter.
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Data

We analyzed COVID-19 Forecast Hub case and hospitalization
projections from August 2020 through June 2022:

® National and state predictions

® Top 20 most frequently-reported models, ensemble models,
baseline models (day-of prediction)

® quantile predictions — mean — binary outcomes (not
sensitive to using median, preferred value)

Methods 20



Imputation

Methods

BPagano-RiDriven
CovidAnalytics-DELPHI
COVIDhub_CDC-ensembie {
COVIDhub-4_week_ensemble-
OVIDhub-baseline
CU-nochange
CU-scenario_low
CU-scenario_mid

CU-select
JHU_IDD-CovidSP
JHUAPL-Bucky
Karlen-pypm {
Microsoft-DeepSTIA
RobertWalraven-ESG
UMich-RidgeTtReg {
USC-SI_kJalpha:
UVA-Ensemble {

BPagano-RtDriven
CovidAnalytics-DELPHI

CU-scenario_mid
CU-select
JHU_IDD-CovidSP
JHUAPL-Bucky
Karlen-pypm {
Microsoft-DeepSTIA
RobertWalraven-ESG {
UMich-RidgeTfReg {
USC-S!_kJalpha
UVA-Ensemble

2wk ahead

4wk ahead

i —
[T
illl

T
.
e
i
TTT
I

w1
IIHI 11}
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Imputation
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When missing, impute
worst).

Methods

2wk ahead

average (sensitivity analyses: baseline, best,
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Metrics

Using New York Times data as truth, we computed:

1. Accuracy: % correct

2. Sensitivity /Specificity: given true positive or negative
status, how many correct?

3. Positive predictive value/Negative predictive value: given
prediction class, how many correct?

Methods

22



Metrics

Using New York Times data as truth, we computed:

1. Accuracy: % correct

2. Sensitivity /Specificity: given true positive or negative
status, how many correct?

3. Positive predictive value/Negative predictive value: given
prediction class, how many correct?

In more preliminary results, we:
1. Characterize decision rules

2. Explore alternative ensembles

Methods
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Extensions

1. Limited decision points (in progress w/RIDOH)

2. Trade-offs between lead time and certainty

Methods
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Baseline comparison

1- to 4-week horizon of State Level cases under scenario 1 1- to 4-week horizon of State Level hospitalizations under sct
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© £
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2 -1
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Jan 21 Jul21 Jan 22 Jan 21 Jul 21 Jan 22
1 week horizon 2 week horizon — 3 week horizon — 4 week horizon
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Baseline comparison

Cases truth data shown by dotted line
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Performance over time
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Performance over time
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Metrics
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Metrics

4 week horizon

Baseline -

Top 20 1

4-week ensemble -
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Trained ensemble

Results
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What to do with this?

4 week horizon

Baseline -
Top 20 A
P _=Z
4-week ensemble - 3 %
o2
CDC ensemble - 23

Ensemble -

Trained ensemble

Prevalence 1
Accuracy 1
Sensitivity -
Specificity -

PPV
NPV

— NPV and PPV are about 60-80%. Given a result (and the
distribution of outcomes), about 1 in 3 chance it is correct.

Results
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Decision rules

When should we change behavior?

For “increasing” metrics:
g

® Act on “increase” signal if: willing to accept one false alarm
(false positive) for every 2-4 correct calls
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Decision rules

When should we change behavior?

For “increasing” metrics:

® Act on “increase” signal if: willing to accept one false alarm
(false positive) for every 2-4 correct calls

For “decreasing” metrics:

® Act on “decrease” signal if: willing to accept 50-50% chance
correct call

For both:
® Stay put on “no change” signal: 75-95% chance correct

There are caveats, but...much appreciation for the work of
state and local officials!

Results
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Model rankings

2 wk horizon
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Model ranking and aggregation
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Model ranking and aggregation
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Model ranking and
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Extensions

Alternative ensemble

® \We have experimented with alternative ensembles but not
really found a clearly better-performing set of weights.
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Extensions

Alternative ensemble

® \We have experimented with alternative ensembles but not
really found a clearly better-performing set of weights.

® Distributional challenges

States

® Qualitatively similar results
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Discussion

Discussion
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Conclusions

1. We hope this work encourages thinking about the best ways
to link predictive models to actions.
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Conclusions

1. We hope this work encourages thinking about the best ways
to link predictive models to actions.

2. There are remains an unmet need to model changes in

trajectory (and clearly communicate corresponding
uncertainty).

3. For our metrics, ensemble models continue to perform best,
but have considerable uncertainty.
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Limitations and next steps

1. Next steps

Optimized ensemble

More complex decision rules

Fire alarms rather than forecasts

Regression discontinuity for when actions change trajectory
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Limitations and next steps

1. Next steps

Optimized ensemble

More complex decision rules

Fire alarms rather than forecasts

Regression discontinuity for when actions change trajectory

2. Limitations

® Not a proper scoring rule — best way to fit models?
® Unusual data!
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Thank you!

Questions?
Feel free to reach out: alyssa_ bilinski@brown.edu
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Performance over time
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Metrics
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