
Don’t Feed the Bugs

Reproducibility for Health Policy Research

Alyssa Bilinski
April 3, 2024

Does your code work?

Ya sure?

…how do you know?

Does your code work?

Ya sure?

…how do you know?

I should hope so.

Well, it runs.
I checked and double-checked it.
The results “make sense.”

Complex code underpins much of our research.1

In research, we implicitly assume that code meets
quality standards because:

2

Researchers really care.
There are many eyes on the output (co-authors, reviewers).
(Sometimes) code is public.

This felt inadequate.

This felt inadequate.

So, I called a software engineer.

Software engineers are:
• Formally trained to write code
• Primarily focused on writing high quality code

So, I called a software engineer.

Researchers Software Engineers

Code is the easy part. Code is a very hard part.

Check outputs. Test each unit.

One or two coders Highly collaborative

Final version Iterative

Today, I’ll argue that our approach to
reproducibility should adapt insights from software
engineering.

The current paradigm is insufficient to support high-
quality research.

Even when it “works out,” it’s both hard on analysts and
hard to communicate quality-assurance procedures.

Today, I’ll argue that our approach to
reproducibility should adapt insights from software
engineering.

We’ll be keeping it simple.

Does your code do what you want/think it does?
Do results get to where they need to go?

Collaborators

John Giardina
Massachusetts General

Research Institute

Luke Massa
Tripadvisor

Gray Babbs
Brown University

Mindset

In research, coding can seem “easy” relative to
generating a question and learning statistical methods.

But actually…writing code that does what you want is
really, really hard.

Mindset

There are always bugs in your code.

The key is a system that avoids or stomps on the ones
that matter.

Mindset

Minimize opportunities for errors.1

Assume guilty until proven innocent.2

Mindset

Minimize opportunities for errors.1

Avoid copy/paste.

Automatic updates

Functions

Mindset

Minimize opportunities for errors.1

When unavoidable,
make checking easy.

Linked source data

ReadMes

Mindset

Assume guilty until proven innocent.2

What could have gone wrong, and
how could I check that it didn’t?

• Check range of values
• Missing variables: (NA, “N/A”,

“”, “ “)
• Typos/misspellings in strings
• Unreasonable estimates (e.g.,

negative age)
• Check sample size before/after

merges or filtering
• Accidental drops
• Accidental duplications

Testing

I learned to rely on two indicators of code quality:
1) Did it run?
2) Do my results look weird?

These are important! But they are pretty ad hoc.

Testing

Software engineers formally test each unit, or chunk of
code as well as how they fit together.

Define tasks that each function (or set of functions)
should complete.

1

Design tests to ensure that you receive expected
outputs given a set of inputs.

2

Run tests over different sets of inputs.3

Testing

Testing is rarely straightforward.

Writing a sufficient set of tests is a skill developed
over time.

Testing

Case #0 (toy): Square roots.

Testing

Case #1 (easy): Fast covariance matrices.

We developed a function to:
1) Adapt normal-based covariance matrices for a

specific context
2) Speed matrix multiplication compared to standard

estimates

Testing

Case #1 (easy): Fast covariance matrices.

~ 50 tests (testthat in R)

1) Simulate random data
2) For each simulated dataset

and covariance option:
1) Check that coefficients,

variances, linear
combinations matched
alternative commands
when inputs were set to
standard case

2) For non-standard cases,
re-do estimates
manually

Testing

Case #2 (af3g%^&*): Complex simulation models

Goal: Write a sufficient set of tests to trust my model.
Roadblocks:
1) I’m writing a simulation model because I don’t know

expected outputs for a set of inputs.
2) I’m stringing together a lot of functions that may behave

oddly even if each unit test passes

Testing

Case #2 (af3g%^&*): Complex simulation models

1) Collate input parameters
 - Table 1 + structural parameters

2) Define and track intermediate outputs
 - Add intermediate “napkin” outputs for each input that can reverse
 engineer input behavior

3) Run and report test results over different input combinations

Testing

Case #2 (af3g%^&*): Complex simulation models

Overdispersion parameter
Wildtype COVID-19 was “overdispersed” à heterogeneous individual
infectiousness.

- Implemented as a multiplier on individual attack rate

To track attack rates:
1) Track number of infectious individuals in each day in each setting.
2) Track number of contacts per day in each setting.

Testing

Case #2 (af3g%^&*): Complex simulation models

Overdispersion parameter
Wildtype COVID-19 was “overdispersed” à heterogeneous individual
infectiousness.

- Implemented as a multiplier on individual attack rate

To track attack rates:
1) Track number of infectious individuals in each day in each setting.
2) Track number of contacts per day in each setting.

We observed a slight underestimate in attack rate:
1) only in households
2) only with overdispersion turned on

In rare cases, overdispersion could push the attack rate > 1 à NA.

Testing

Case #2 (af3g%^&*): Complex simulation models

Tests improve transparency.

Testing

Case #2 (af3g%^&*): Complex simulation models

Not every test is worth doing.
But be explicit about what met the bar

Collaboration

Coding solo is more error-prone than collaborative
coding, even with testing.

Code review and/or double-coding is often more
efficient.

You’d be hard-pressed to find a business that has coders
go solo.

Collaboration

Code review1

Collaboration

Code review1

Collaboration

Code review1

Collaboration

Double code when feasible.2

Formal structures for independent reproducibility.3

Let’s be creative.

Even self-coding...

Collaboration

AI solutions4

Let’s be creative.

Iteration

Final_Version_2_FINAL

Opportunities and challenges for health policy

Software engineers have both:

More intensive procedures
Much lower standards

This invites both humility and effort.

Opportunities and challenges for health policy

Proprietary data1

Limited seats2

Ethical concerns3

Code release
Replication package on public/aggregated data

Develop framework and software to support
reproducibility in health policy.

Opportunities and challenges for health policy

Develop framework and software to support
reproducibility in health policy.

How you thought about your code should be as clear
as how you thought about your statistical methods

Questions?

We would love any of your thoughts on these ideas.

alyssa_bilinski@brown.edu

