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Models are powerful tools for prediction and policy.
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My takeaways
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Simple models are both incredibly powerful and often
undervalued.



Modern models are often complex.
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Modern models are often complex.

With stunning
results...

Physical Processes in a Model

CONTINENT

The accuracy of weather forecasts has improved

Accuracy is measured as the difference between the forecast and subsequent weather. This is based on
the ‘500 hPa geopotential height’ which is a common meteorological metric used to measure air pressure.
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Source: European Centre for Medium-Range Weather Forecasts (ECMWF).

Licensed under CC-BY by the author Hannah Ritchie.
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But complexity comes with costs for modelers...

G Production time. Fven with high-performance computing, complex
models take time to develop and run.

Data collection. Granular models require granular data.

Interpretability. \/Vhat exactly is my model doing”

= catching typos and thinkos
= making policy recommendations




...and these costs matter for policymakers.

\ Slower availability of

S modeling evidence.

o Interpretability. > Trust

Transportabilit%l (not forecasts)
—> context-specific expertise
Value judgments

= asymmetric error costs
Understanding divergent
models

Complex models can close conversations.



At the same time...

| realized that skilled colleagues - both researchers and policymakers -
drew heavily on the ability to rapidly generate, manipulate, and
explain simple models - with actionable results

But in contrast to the many classes available to learn about complex
simulations and machine learning, | had never seen this formally taught.

In fact, we didn't even have vocabulary for it.



Enter napkin math.



What is napkin math?
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Why use napkin math?

~or many policy questions, we may not need a complex model
Napkin math can get us the answer with sufficient precision to make a
decision.

—ven when complex models are needed, napkin math can help us o
develop, check, interpret, and compare models and understand
common prediction errors.

Course
« >300 participants
« TJechnigues
e Examples
* Practice

Research and Practice



Collaborators

Jeff Imai-Eaton (Harvard)

David Paltiel (Yale)




Today

| will highlight how napkin math is a powerful tool for:

e Answering policy questions (“Aiming off")
a Building complex models (“What did | do?")

e Using complex models (“What do we do?”),



Aiming off

Even if the world is complicated,
your decision may not be.

Definition - Antigen tests - HIV Re-testing - RCTs in Pregnancy - Cancer screening



Aiming off
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Should you
follow your
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In a heavily wooded area, chances of hitting your target directly are low.

Definition



Consider. ..
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Aiming off

A fundamental strategy for
wilderness navigation

A particularly useful technique
in bad weather or when your
view of the destination is
blocked by tree cover or the
contour of the land.

Detinition - Antigen tests >-testing - RCTs i



Aiming off

Also, a useful strategy for )
decision making under ~

uncertainty: bias your inputs.

llustrates a theme for today:
Managing the decision/
orecision tradeoff,
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Application
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https://doi.org/10.7326/m21-0510
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OPINION

A Cheap, Simple Way to Control the

Coronavirus

With easy-to-use tests, everyone can check themselves every day.




The evidence was already there...

£ SARS-CoV-2 testing >%®

cost-effectiveness © - ...but skeptics worried:

Comparative b ling study
stratzgies in the USA: a modelling pustoreypiont, MichadLochman?

L C Fitzpatrick”, Matteo Chinazzi, A

zr

4 Despite the intimidating upfront costs, mass testing with rapid
i surveillance tests coupled with strict but relatively short
isolation of confirmed cases is recommended to health
authorities and local governments as a cost-effective strategy .
for mitigating the unprecedented threat of the COVID-19 freq uent fa Ise-negatlves
pandemic, before safe and efficacious vaccines can be widely frequent false-positives
administered or efficacious drugs become available.

poor uptake

imperfect adherence

Antigen tests


https://doi.org/10.1016/s2468-2667(21)00002-5

“Even if” analysis

Stacking the deck against mass testing:
as many as /5% of tests go straight into the
garbage can;
as many as /5% of positive test findings are
simply ignored,
each day, up to 33% of those in isolation
abandon and return to the community;
test specificity 95% (best guess: 98 5%),
test sensitivity 80% (best guess: ~100%):;
test cost $5 (best guess: $0.20)
value of a statistical life $5.3M (range $5.3-
$15.6M)

Antigen tests



Results

No Testing Testing
Testing (Base Case) (Worst Case)

Total infections 11,600,000 8,810,000 11,000,000
Total Deaths 119,000 103,000 116,000
Total Costs
($ billions) 10.7 32.4 241
Infections averted 2,830,000 634,000
Deaths averted 15,700 3,390
Cost per death
averted 1,430,000 4,140,000

Paltiel, et al. Ann Intern Med 2021. DOI: 10.7326/M21-0510 - Engage a debate

Antigen tests
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Re-testing to confirm HIV diagnosis before
ART initiation

Clinical Infectious Diseases

BRIEF REPORT

The Cost of Not Retesting: Human
Immunodeficiency Virus Misdiagnosis
in the Antiretroviral Therapy
“Test-and-Offer” Era

Jeffrey W. Eaton,' Cheryl C. Johnson,” and Simon Gregson™?

'Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom;
ZHIV Department, World Health Organization, Geneva, Switzerland; and *Biomedical Research
and Training Institute, Harare, Zimbabwe

Faton, Johnson, Gregson Clin Infect Dis 2017, 65:522-5

HIV Re-testing



Re-testing to confirm HIV diagnosis before

ART initiation

« Longstanding WHO recommendation to re-test
oeople with HIV prior to lifelong ART initiation to
contirm HIV positive status

* Increased importance under 'test-and-start’

« Substantial evidence that HIV misdiagnosis occurs
in several global settings

« Malawi 2015: 4.6% of people referred for ART
were subsequently found to be HIV-negative
when retested

« Recommendation very poorly implemented

« Outof 48 national HTS policies, only 2 countries
mentioned re-testing (circa 2016)

HIV Re-testing

 GUIDELINES

CONSOLIDATED GUIDELINES ON

HIV TESTING
SERVICES

5Cs: CONSENT, CONFIDENTIALITY, COUNSELLING,
CORRECT RESULTS AND CONNECTION

HIV TESTING SERVICES




Re-testing to confirm HIV diagnosis before

ART initiation

Reasons why HIV
misdiagnosis is bad

* Individual and family consequences

« Legal exposure to the provider

« Undermines confidence in health
system

« Lifelong ART for someone HIV-
negative I1s expensive

Reasons cited for not
implementing confirmation
testing recommendation

e HIV testing algorithms 'highly
accurate’ (>99.5% specificity)

« Perceived high cost of re-testing
everyone before ART

« Health worker burden and capacity
constraints

e Uncertainty how / where to
implement

HIV Re-testing



Re-testing to confirm HIV diagnosis before

ART initiation

Reasons why HIV
misdiagnosis is bad

* Individual and family consequences

* legal exposure to the provider

« Undermines confidence in health
system

Challenge: very hard to quantify
the ‘cost’ of these (potentially
infinite?)

» Lifelong ART for someone HIV-  <=mmm  This we can quantify!

negative Is expensive

Cost of re-testing
before ART (~2x ??7?) s $ s

HIV Re-testing




s the benefit of avoiding the lifelong ART cost for
misdiagnosed HIV-negative alone sufficient to offset the cost

of re-testing?

« FEstablish a lower-bound on the other unguantifiable costs

Cost of lifelong ART

for an HIV-negative Cost of re-testing
person before ART s s s

HIV Re-testing



Re-testing to confirm HIV diagnosis before
ART initiation

Clinical Infectious Diseases

BRIEF REPORT

The Cost of Not Retesting: Human
Immunodeficiency Virus Misdiagnosis
in the Antiretroviral Therapy
“Test-and-Offer” Era

Jeffrey W. Eaton,' Cheryl C. Johnson,” and Simon Gregson™?

'Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom;
ZHIV Department, World Health Organization, Geneva, Switzerland; and *Biomedical Research
and Training Institute, Harare, Zimbabwe

This problem turned out to be really
‘boring’... (The best kind of modeling
problem)

Faton, Johnson, Gregson Clin Infect Dis 2017, 65:522-5

HIV Re-testing



Re-testing to confirm HIV diagnosis before
ART initiation

Clinical Infectious Diseases Key realization from 5 minutes sketching out a

BRIEF REPORT model

Number testing HIV-negative is the main
driver of HIV testing program costs

The Cost of Not Retesting: Human
Immunodeficiency Virus Misdiagnosis * Confirmation re-testing involves only

in the Antiretroviral Therapy people who tested HIV positive

» d | 7 | )
“Test-and-Offer” Fra Small and reducing fract\on, not
anywhere near 2x testing cost

Jeffrey W. Eaton,' Cheryl C. Johnson,” and Simon Gregson™?

'Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom;
ZHIV Department, World Health Organization, Geneva, Switzerland; and *Biomedical Research °
and Training Institute, Harare, Zimbabwe

Cost and personnel time for HIV testing is
low compared to providing ART

* Didn't need to consider the things that
were really hard to quantify

- To avoid quantifying

Faton, Johnson, Gregson Clin Infect Dis 2017, 65:522-5
nebulous parameters

HIV Re-testing



Pregnant enrollment in randomized clinical trials

SINS OF OMISSION

Model-based Estimates of the Health Effects of Excluding Pregnant
Participants from Randomized Controlled Trials!

Alyssa Bilinski, PhD - Natalia Emanuel, PhD - Andrea Ciaranello, MD, MPH

Pregnant people are excluded from drug development RCTs by default,
with the objective of protecting them and their children.

But...what happens then”
1) Reduction in beneficial use: Some people are hesitant to take
medications that would benefit them because of a lack of evidence

(1/3 reduction).

2) Pregnant individuals can still opt to take most medications: Still
exposed to side effects (24% still take)

RCTs in Pregnancy



Pregnant enrollment in randomized clinical trials

Unless a drug is harmful AND pre-clinical evidence is sufficient to
curtail its use, the current system is the worst of all worlds.
Limits benefits while still incurring harms

Figure 2: COVID-19 Vaccine Uptake & Value
Panel A: COVID-19 Vaccine Uptake by Demographic Group
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RCTs in Pregnancy



Cancer screening

Original Investigation

August 28, 2023

Estimated Lifetime Gained With Cancer Screening Tests
A Meta-Analysis of Randomized Clinical Trials

Michael Bretthauer, MD, PhD1; Paulina Wieszczy, MSc, PhD1*2; Magnus Leberg, MD, PhD1; et al

OAuthor Affiliations | Article Information

JAMA Intern Med. Published online August 28, 2023. doi:10.1001/jamainternmed.2023.3798

Results In total, 2111958 individuals enrolled in randomized clinical trials comparing screening with no screening using 6 different tests were eligible.
Median follow-up was 10 years for computed tomography, prostate-specific antigen testing, and colonoscopy; 13 years for mammography; and 15 years
for sigmoidoscopy and FOBT. The only screening test with a significant lifetime gain was sigmoidoscopy (110 days; 95% ClI, 0-274 days). There was no
significant difference following mammograph)l (0 days: 95% ClI, —190 to 237 days),lprostate cancer screenind(S? days; 95% Cl, -37 to 73 days),l
colonoscopy|(37 days; 95% Cl, —146 to 146 days)] FOBT screening every year or every other year (0 days; 95% Cl, —70.7 to 70.7 days), and lung cancer
screeninj; (107 days; 95% CI, —286 days to 430 days). I

Cancer screening



Cancer screening

Original Investigation

August 28, 2023

Estimated Lifetime Gained With Cancer Screening Tests
A Meta-Analysis of Randomized Clinical Trials

Michael Bretthauer, MD, PhD1; Paulina Wieszczy, MSc, PhD1*2; Magnus Leberg, MD, PhD1; et al

OAuthor Affiliations | Article Information

JAMA Intern Med. Published online August 28, 2023. doi:10.1001/jamainternmed.2023.3798

Results In total, 2111958 individuals enrolled in randomized clinical trials comparing screening with no screening using 6 different tests were eligible.
Median follow-up was 10 years for computed tomography, prostate-specific antigen testing, and colonoscopy; 13 years for mammography; and 15 years
for sigmoidoscopy and FOBT. The only screening test with a significant lifetime gain was sigmoidoscopy (110 days; 95% ClI, 0-274 days). There was no
significant difference following mammography (0 days: 95% CI, —190 to 237 days), prostate cancer screening (37 days; 95% ClI, —37 to 73 days),
colonoscopy (37 days; 95% CI, -146 to 146 days), FOBT screening every year or every other year (0 days; 95% Cl, —70.7 to 70.7 days), and lung cancer
screening (107 days; 95% CI, —286 days to 430 days).

Conclusions and Relevance The findings of this meta-analysis suggest that current evidenc+ does not substantiate the claim Fhat common cancer

screening tests save lives by extending lifetime, except possibly for colorectal cancer screening with sigmoidoscopy.

Cancer screening



Pull out your napkin...

Many estimates suggest that breast cancer screening is cost effective with 500-
2000 screened per death averted (say, 10 years of life gained).

What does this translate to in population life expectancy gains among people
eligible for screening?

1/500 x 10 x 365 = 7.3 days
1/2000 x 10 x 365 = 1.8 days
Heck, 1/100 x 10 x 365 = 37 days

Cancer screening



Pull out your napkin...

Many estimates suggest that breast cancer screening is cost effective with 500-
2000 screened per death averted (say, 10 years of life gained).

What does this translate to in population life expectancy gains among people
eligible for screening?

1/500 x 10 x 365 = 7.3 days
1/2000 x 10 x 365 = 1.8 days
Heck, 1/100 x 10 x 365 = 37 days

What does this mean for screening?

for sigmoidoscopy and FOBT. The only screening test with a significant lifetime gain was sigmoidoscopy (110 days; 95% ClI, 0-274 days). There was no
significant difference following mammography (0 days: 95% CI, —190 to 237 days), prostate cancer screening (37 days; 95% ClI, —37 to 73 days),
colonoscopy (37 days; 95% CI, —146 to 146 days), FOBT screening every year or every other year (0 days; 95% Cl, —-70.7 to 70.7 days), and lung cancer

screening (107 days; 95% CI, —286 days to 430 days).

Population-level estimates are underpowered to detect screening effects, with

clinically meaningfully impacts -> Are we using
the right outcome?

Cancer screening



Aiming off

VWhen it works, you're have an
actionable insight You have
a2 bound.

..even when inputs are
contested, hard to measure, or
uncertain.

The Bad: You can aim off into
an unhelpful answer.



What did | do?

Using simple models to
develop complex ones

Coherence checks (Benchmarking against linearity, Mini models) - Formal testing



ls your complex model working?

This is a deceptively challenging task...and critical
for trust.

Start with coherence checks.
e "Does this make sense?”

Then, apply formal testing.

« Systematic code evaluation



Benchmarking against linearity

Change in health (e.g. QALYs)
N\

Let's picture some
Intervention
comparisons in the
typical cost-
effectiveness plane

How do costs and
health benefits change
as we ‘expand’ an
intervention? \Z

~
7

Change in costs

AN\

Coherence checks (Benchmarking against linearity



Time to play ... “Is this thing linear?”

Change in health (e.g. QALYs)
N\

Expected shape of
expansion path for:

A, Cervical cancer
screening, with frequency
going from g 10y to gly

~
>

Change in costs

AN\

Coherence checks (Benchmarking against linearity



Time to play ... “Is this thing linear?”

Change in health (e.g. QALYs)
N\

Expected shape of
expansion path for:

A Cervical cancer
screening, with frequency
going from g10y to gly

3. Hypertension treatment,

with adherence going
from 20% to 80%

~
>

Change in costs

AN\

Coherence checks (Benchmarking against linearity



Time to play ... “Is this thing linear?”

Change in health (e.g. QALYs)
N\

Expected shape of
expansion path for:

A Cervical cancer

| | 4
screening, with frequency
going from g 10y to gly /

3. Hypertension treatment,

with adherence going
from 20% to 80%

C. Covid-19 vaccination with

coverage going from
20% to 80%

~
>

Change in costs

AN\

Coherence checks (Benchmarking against linearity



Benchmarking against linearity - let's zoom out

= When are expansion paths in the cost-effectiveness plane
nonlinear?

» Costs and effects are disproportionately affected by
changes in scale

= \What can make costs nonlinear?

» Fixed costs spread out over units of production
> Variable costs that are not constant in scale

= What can make health effects nonlinear?
> Redundancy of effort

> Transmission dynamics

Coherence checks (Benchmarking against linearity



Mini models... PrEP edition

= CDCisinterested in
reconsidering the way it
estimates the population-
level need for HIV pre-
exposure prophylaxis
(PrEP).

= One relevant question is
how the cost-effectiveness
of PrEP relates to
underlying HIV risk.

2,000

Thousands

1,500

1,000

500

Icremental cost-effectiveness ratio (dollars/QALY)

= We can estimate this
relationship with a very
simple model.

-500

Reduction in annual risk of HIV infection through use of PrEP

= .. butdoesthislook

irection? ? i ?
right? Direction Shape* Magnitude

Coherence checks Mini models



Mini models... PrEP edition

Some assumptions. ..

2,000

Thousands

PrEP cost per person:

$10,331

1,500

Lifetime cost of HIV:

1,000

$305,000

500

QALYs lost per HIV infection:

Icremental cost-effectiveness ratio (dollars/QALY)

2.4 0
Start Wlth a pOII’Tt Oﬂ -500 Reduction in annual risk of HIV infection through use of PrEP
the curve and do a
little napkin math (Think of x-axis as expected infections averted per person

taking PrEP for one year)

Coherence checks Mini models



Mini models... PrEP edition
Some napkin math. .

What is the number needed to 2,000
treat to prevent one infection at 2%
risk reduction? 50

Thousands

1,500

— What is the PrEP cost to prevent
an infection? $10K*50

1,000

— What is the cost net of savings 500

from averting an infection?

$10K*50-305K

Icremental cost-effectiveness ratio (dollars/QALY)

— So, roughly ... what is the 500
incremental cost per QALY at 2%

Reduction in annual risk of HIV infection through use of PrEP

risk reduction?
change in costs 10K * 50 — 305K

change in DALY s ~ 2.4

Coherence checks Mini models




Mini models... PrEP edition

Some napkin math. .

»» 2,000
What is the number needed to 2
treat to prevent one infection at 2% 5 10
risk reduction? ;:
8 wrong
£ 1,000
— What is the PrEP cost to prevent g
an infection? g
- 500
— What is the cost net of savings 5
from averting an infection? £ o
o 0.01 0.02 0.03 4 0.05 0.06
— So, roughly ... what is the 500

Reduction in annual risk of HIV infection through use of PrEP

incremental cost per QALY at 2%

risk reduction?

Coherence checks Mini models



General tips for interrogating interim results

= Look at lots of XY plots

> You already do this in various ways (the CE plane is one,
sensitivity analyses are another)

> ...Now do more!

= Why collapse into 2D?
> Visualizing in >2 dimensions is hard.
> We try it anyway, but...

= Work backward from your summary results
> Look at intermediate health outcomes
> Disaggregate costs by major categories

Coherence checks (Benchmarking against inearity, Mini models) - Form:



Testing complex models

Community
infections PN A
-~ —— g —— A
Students + siblings + 2 guardians Classrooms (students + teacher) Childcare
School staff + adult partner Rotating teachers (arts, special ed) Out-of-school activities
Other (admin, janitorial staff, counselors)
Reduced school transmission E Schedule adjustments F Classroom quarantine
(masks, distancing, hygiene) a4l
Symptomatic self Regular surveillance
o ’
-/'j Reduced class sizes isolation + testing screening

Formal testing



Testing complex models

Table. Selected Input Parameters for Agent-Based Dynamic Transmission Model of 30-Day SARS-CoV-2 Outcomes in Elementary Schools

Table.
Outcomes in Elementary Schools

Parameter Values Source

Fullday in-school symptomatic dult-to-adult

secondary attack rate (unmitigated)

Wid-type 20% Blinskietal, ' 2021; Doyl etal
20010

Apha 35% Daviesetal,”* 2021°

Dela 7.0% Sogmmgmetd 202l

ation
Covaeion Immumsalmn Research and
Survellance,* 2021°
Attack rate multipliers by location and duration
of contact (reltivetoful day n-school
contact)

At-home contacts 2 Assumption based on documented
increased attack rates in the home
(Thompson et al, 2021) and

incresed time n close proximity

Brif contactsatschool (random and specials  0.125° Assumed to ast 1 period out of an

classes) S perod doy,withfectonisk
proportionaltoti

Brif contacts atschool (staff-staff contacts) 025" asomedtoist 1 prdodt ol
8-period day, but with igher isk
from closer proximity (eg, break

)

Contacts between households (eg,childcare) 1 Assumption; in-school mitigation
measures are not applied to these
contacts

Infectiousness (relative to symptomatic adults)
Student (in-school and asymptomatic (X3 Literaure reiew and calirain fom
me) Biinskietal, ' 2021

Asymptomatic adult 05 Branbasuren tal 2020, e
etal,” 202

Student (symptomatic at-home) 1 Paulet al.” 201

Overdispersion mltipler (for adults) Losmormaldstrbuion  erre 2020, Endoetal > 2020

04,03
Susceptivilty (reltive to dults)
Student o0s* Literature review and calbration from

Length of Latent and incubation periods and
infection (days)

Bilnski et al, "¢ 2021

period)

Time from exposure to symptoms (if
symptoms occur) (incubation period)

distribution (5.8, 0.95)
s nor ibution
Q041"

‘Gamma distribution
(5.8,095)°

6.2)"
Probabiltyclinical/symptomatic infection
Probabilty of asymptomaic nfection
Student o4
Aduit 02*
Probabilityof subclinical nfection, including
omatic
Student 08"
Aduit 04"
Polymerase chain reaction test character
1(symptomatic testing)”
Test turaround time, d »
Weekly screening parameters
Testing uptake (fraction of school screened  90%°
‘each week)
Testing day Monday®
Hospitalizationrisk after SARS-CoV-2 infection
Student (unvaccinated) 0%
Adult (unvaccinated) 24%
Al (vaccinated) o
Vaccine uptake
Student 255 0% ana 70%
; 90%
(smsmwly analysis)
Aduit ]

Vaccine effectiveness
Allindividuals

Risk of exposure in wider local community
Observed local incidence rate:

Actual incidence ofinfections within
immediate school community sourced from

(sensitivity analysis)

Toxeducioninnfection
25%, 50%,

analysis)

OLE 00
resident

3 lml
incidence rate:

Lover etal ; 1°2020;
Lietal, ® 3020; Gatto etal,** 2020

Lauer etal,* 2020; Lietal, 2° 2020

Lietal, ™ 2020; Kerr etal” 2020;
He etal,"* 2020; Firth etal,”> 2020°

Fontanetet o 2021 tein Zamie
etal,**20,
Iyimhasumn etal 22020

Hanetal,* 2021

Upper bound of estimate from
Byambasuren etal,*? 2020

theson et 2021, Lare
B, ot i
Wilieetal 42020; Kunmaenl o

Assumm.on
Assumption
Assumption

US Centers for Disease Control and,
revention,*? 2021; Delshoy et al,**

2021°

US Centers for Disease Control and
revention, 2 2021°

Rosenberg et al, “ 2021
Assumption

Us Centers for Disease Control and
revention,*> 2021

Rosenberg et al, “ 2021

O Fowlkes oS 3021;  * eMethods1inthe supplement incudesan

Puraniketal, 2 2021; Zengetal** ‘explanation of how these parameters were derived
from the lsted sources.

© Baseline parameter from Bilinski, etal*
< This value was set to match the generation time
Assumption implied by observed estimates of the seral nterval
‘and presymptomatic ransmission, without assuming

Assumption

ommunity

Formal testing



Testing complex models

Table. Selected Input Parameters for Agent-Based Dynamic Transmission Model of 30-Day SARS-CoV-2 Outcomes in Elementary Schools

Table.
Outcomes in Elementary Schools.
Parameter Values. Source
Full day - school ymptomatic adult-to-adut
secondary attack rate (unmitigated)
Wild-type 20% inski et al, " 2021; Doyle et al**
2001°
Alpha 35% Davies etal”* 2021°
Delta 7.0% Singanayagam et a1

Attack rate multipliers by location and duration
of ontact (relative tofull day in-school
contact)

At-home contacts

Brief contacts at school (random and specials  0.125°

classes)

Brief contacts at school (staff-staff contacts) ~ 0,25

Contacts between households (eg, childcare) 1
Infectiousness (relative to symptomatic adults)

Student (in-school and asymptom: 05"

©)

Asymptomatic adult 05"

Student (symptomatic at-home) 1

Overdispersion multiplier (for adults) Lognorl dirbuton

(0.84,0.3)/0.84'

Susceptibiity (relative to adults)

Student 0s®
Length of Latent and incubation periods and

fection (days)

period) distribution (5.8, 0.95)

Time from exposure to symptoms (if
symptoms occur) (incubation period)

minus normal distribution
@.04).1"

‘Gamma distribution
.8,0.95)°

©2021;
Dougherty etal,*? 3021; National
Centre for Immunisation Research and
Surveillance,* 2021°

Assumption based on documented

increased attack rates in the home
(Thompson et al, 2 2021}

ncreased time in close proximity

Assumed to ast 1 period out of an
8-peiod day with nfection ik

proportions to ti

Assumed to ast 1 venod out of an

S-peiod day butwith hiher rsk
from closer proximity (eg, break

room).

Assumption; in-school mitigation

measures are not applied to these

Literature review and calibration from
Bilnski et 1, 2021

Byambasuren etal,* 2020; He
etal,” 2020

Pauletal,’? 2021
Kerretal,?? 2020; Endo etal,> 2020

Literature review and calibration from
Bilnski et 1, 2021

Laver etal* 2020; He etal 22 2020;
Lietal, ® 3020; Gatto etal, ! 2020

Laver etal,® 2021

ietal, 2020

Letal 2020 e etal 2020,

G He etal, 1 2020;Frth et 3,25 2020°
Probabilty cinical/symptomatc nfection
Probabilty of asymptomatic infection
Student o Fonagtt 1. 2021 St i
ol 2
Adut o0 s
Probabiltyofsublinical nfection ncuding
omatic
Student 08 Hanetal 2021
Adut o jper bound of estimate from
Byambasuren et ol 2020
Polymerase chain reaction test characterisics
A R
et 1% 202, Kojms et 31
Test turnaround tm, & » Assullwlmn
Weekly sreening parameters
Testng uptake fractionof school screened 90" Assumption
exchwed)
Testing day Monday” Assumion
Hosptalizationisk after SARS-CoV-2 nfection
Student (unvaccinated) 01% 05 Cnters o i Comrotang
021; Delahoy et L
Soonr
Adul (unvaccinated) 24% 4 enters o s Conotand
evention,*
Al (vccinated) 3 Rosenberg et S
Vaccineuptake
Student 0%, 25%,50% and 70%  Assumption
case); 0%
(sensitivity analysis)
Adult T0% (e e 50%amd s Cnters o DisseConrotand
90% (ensitivity nalysis)  Prevention
Vaccine effectiveness
Alindiiduals 70% reductionin nfection  Rosenberg et a,* 2021 Keehner
25% 505, etol,” 2021, Fowlkesetal,-12021; * eMethods linthe Supplement incudes an
Pkl 2021 eng a1 explanation of how these parameters were derved
) k) from the sted sources.
Riskof exposure n wider local community S s o
Observed local ncidence rate 0-50cases per 100000 Assumption e g
residents per & < This value was set tomatch the generation time
Actual incidence of infections within 3 x obse local Assumption implied by estimates of the serial interval
immediateschool community Sourced from incidence rate and presymptomatc ransmission, without assuming

widerlocal community

Formal testing



Testing complex models

Table. Selected Input Parameters for Agent-Based Dynamic Transmission Model of 30-Day SARS-CoV-2 Outcomes in Elementary Schools

Table.
Outcomes in Elementary Schools

Parameter Values Source

Full day in-school symptomatic adult-to-adult
secondary attack rate (unmitigated)

Wild-type 20% Bilinski et a1, 2021; Doyle et al,**
2010

Alpha 35% Davies etal,** 2021°

Delta 7.0% Singanayagam et al* 2021,

Dougherty etal,*? 3021; National
Centre for Immunisation Research and
Surveillance,* 2021°
Atack ate mltplers by location nd duration
of contact (relative to full ay in-schor
contact)
At-home contacts

Assumption based on documented

ncreased time in close proximity

Brief contacts at school (random and specials  0.125" Assumed to ast 1 period out of an

classes) 8-period day, with nfection risk
proportional to time

Brief contacts at school (staff-staff contacts) ~ 0,25 Assumed to ast 1 period out of an
8-period day, but with higher rsk

rom closer proximity (eg, break

room)

Contacts between households (eg, childcare) 1 Assumption; in-school mitigation
measures are not applied to these
contacts.

Infectiousness (relative to symptomatic adults)

Student (in-school and asymptomatic 0s° Literature review and calibration from

at-home) Bilinski et L, 2021

Asymptomatic adult os® Byambasuren etal,* 2020; He
etal,” 2020

Student (symptomatic at-home) 1 Pauletal,’? 2021
Overdispersion multiplier (for adults) Lognormaldiiribution  Kerretal 2020; Endo et 2020

(0:84,03)/0.84°
Susceptibiity (relative to adults)
Student (X3 Literature review and calibration from

Bilnski et 1, 2021

Length of Latent and incubation periods and
tion (days)

¢ Lauer et a1, 2020; Heetal,12020;
period) Gitoton (55,095 Lievay?23020; Gato et 2020
minus normal distrbution
2,0.4);1

Laver etal,® 2020; Li etal, ° 2020

symptoms occur) (incubation period) (58,095)°

Design tests to evaluate that all use

Probability of asymptomatic infection

Student 0.4® Fontanet et al, ** 2021; Stein-Zamir
etal,>* 2020
cases pertorm correc
Probability of subclinical infection, including M
Student 08" Han etal,*® 2021
Adult 04" Upper bound of estimate from

Byambasuren etal,*? 2020
Polymerase chain reaction test characteristics

Atkeson et al,”” 20;
L mptomanc tesingR etat 2031 Co ek 3 2031
‘Wylle et al, 4 2020; Kojima et al,**
2021
Test turnaround time, d W Assumption
Weekly screening parameters.

Testing uptake (fraction of school screened  90%° Assumption
each week)
Testing day Monday® Assumption ..
Hospitalization risk after SARS-CoV-2 infection

Student (unvaccinated) 0.1% S Centers for Disease Control and,
Prevention, *? 2021; Delahoy et al,**

that tests require us to anticipate

Al (vaccinated) 0% Rmenhug etal 2021
Vaccine uptake
Student 0%, 25%, 50%,and 70%  Assumption

(base case); 90%
(sensitivity analysis)
Adult 70% (base case); 50% and  US Centers for Disease Control and
90% (sensitivity analysis) Prevention,** 2021 .

Vaccine effectiveness

Alindividuals 70% reductionin infection  Rosenberg et l,“ 2021; Keehner
; %, etal 2021 L2021 ¥
and 90% (sensitivity Puranik etal,*® 2021; Zeng etal, ‘explanation of how these parameters were derived
analysis) 20210
from the sted sources.
Riskof exposure in wider local community Vomd o e i i
ine parameter from Bilinski et

Observed localncidence rate 0:50casesper 100000 Assumption i

residents per < This value was st to match the generaton time
Actual incidence of infections within 3 x observed Iu:al Assumption implied by observed estimates of the srial interval
immediate school commnity sourced from  ncidence rate and presymptomatic transmission, without assuming.

widerlocal community

Formal testing



Testing complex models
What Goes In Must Come Out: Functional testing for complex simulation models

Alyssa Bilinski,! Luke Massa,? Andrea Ciaranello®, Meagan C. Fitzpatrick?, John Giardina®

1) Collate input parameters
- Table T + structural parameters

2) Define and track intermediate outputs
- Add intermedliate “napkin” outputs for each input that can reverse
engineer input behavior

3) Run and report test results over different input combinations

Formal testing



Testing complex models

Overdispersion parameter

- Wildtype COVID-19 was "overdispersed” = heterogeneous individual
infectiousness.

- Implemented as a multiplier on individual attack rate
To track attack rates:

1) Track number of contacts per day in each setting
2) Track number of new infections per day in each setting

Formal testing



Testing complex models

Overdispersion parameter

- Wildtype COVID-19 was "overdispersed” = heterogeneous individual
infectiousness.

- Implemented as a multiplier on individual attack rate

To track attack rates:
1) Track number of contacts per day in each setting
2) Track number of new infections per day in each setting

We observed a slight underestimate in attack rate:
1) only in households
2) only with overdispersion turned on

In rare (<1/2000) cases, overdispersion could push the attack rate > 1
<> NA.

Formal testing
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Table 1 Checks

Parameter

Baseline Attack
at

ting complex models

Fven if you can't "see” bugs as easily, napkin thinking can still be useful for
informing complex models.

"Napkins” can make model testing more transparent.

Observed | Relative

Value
0.070

| Difference
<1%

0.501

<1%

Approach to tracking

The model code tracks the total number of
contacts for each type of interaction
between infected and susceptible individuals
(e.g., at-home contact between an

ic adult and child) and the total

Athome attack
rate multiplier
Brief contact
multiplier

2.000

0.125

1.002

2,015

0.125

Staff-staff
contact
multiplier

2.000

1.996

<1%

Child care
contact

<1%

number of infections resulting from those
contacts.

In order to recover an estimate for each
attack rate multiplier from these trackers,
we used a three-step process. First, for all
types of interactions that involved a
particular multiplier (e.g., at-home attack
rate multiplier), we calculated the number of
infections that we would expect to see in the
absence of that multiplier by multiplying the
tracked number of contacts for those

by all the other relevant

infectiousness
multiplier
Asymptomatic
adult
infectiousness
uitiplier

0.501

0.497

<1%

Tax

Symptomatic
child at-home
infectiousness

2,020

<1%

susceptibility
multiplier

<1%

multipliers (e.g., for at-home interaction
between an asymptomatic adult and child,
multiply total number of contacts by the
baseline attack rate, asymptomatic adult
infectiousness multiplier, and child
susceptibility multiplier, but not the at-home
multiplier); we calculated the total number
of expected infections across all types of
interactions involving the particular
multiplier. Second, we calculated the total
number of tracked actual infections across
those interactions. Third, we divided this
total number of actual infections by the total
number of infections we would expect in the
absence of the multiplier (calculated in the
first step). If the model code has
implemented the multiplier correctly, this
quotient will equal (in the limit) the
particular multiplier parameter we want to
recover.

ScreeningTest | 0.900 | 0900 | <1% Total number of true positive tests divided
Tracker names (in abm_code.R): Sensitivity by total number of tests conducted.
person.days.at.risk home.parents, etc. (for
‘number of contacts per interaction type) Tracker names (in abm_code.R):
and the location, source, adult, and
Source. symp variables (for number of per_tp_count for number of true positive
Infections from each Interaction type). These tests and test_ct for total number of tests.
trackers are summarized., respectively, at 1 conducted.
the end of the model run i the ScreeningTest | 0900 | 0900 | <1% Total number of tests conducted divided by
risk_ct_sympA_A_home, etc. and Uptake total number of times individuals were
| inf_ct_sympA_A_home, etc. variables. eligible (L., in-school on a screening day).
LatentPeriod | 3046 | 3045 | <1% Each day in the model, it is checked who is
(days) infected but not infectious (atent),infected Tracker names (in abm_code.R):
Incubation 5010|5012 | <1% but not symptomatic (incubation), o test_ct for total number of tests conducted
Period (days) | infectious at home. For people who meet and test_regular_eligible for number of
Infectious Period | 5.051 | 5.051 | <1% the criteria, 1 is added to a tracker for the were eligible.
atent, incubation, o infectious period. Hospitalization | 0001000 | 0.000999 | <1% First, the total number of infections tracked
Individuals infected in the broader Rate in the model was multiplied by the fraction
community are not included in this tracker, (unvaccinated o thesuscepti populaton (.
because they can become infected in the child) Vaccination)
“start-up” period in the model. Hospitalization | 0024000 | 0.023996 | <1% tht's umacciated. Then, the total number
Rate of hospitalized individuals was divided by
The infectious period at home Is tracked (unvaccinated this number of infections in unvaccinated
nstead of other infectious period metrics adult) individuals to recover the hospitalization
(e.8. Infectious days at school), since the ate,
other metics are impacted by policies like
testing and quarantine. The code for these Tracker names (in abm_code.R):
policies is tested using the “structural
Ehecks” deseribed below. children for total number of children
infected, adult for total number of teachers
Tracker names (in abm_code.R): ;nle;ud Iazlly l[ol :::ld n::lsbe:‘i‘ :c:n\!
p family members infect p_child for
o o and total number of children hospitalized, and
inf_home_days, to track atent, incubation, hosp_adult for the total number of adults
and infectious periods, respectively. hospitalized.
Probability of 0400 | 0398 <1% Total number of infected individuals who are Vaccine uptake | 0.250 0.250 <1% The total number of individuals flagged as
asymptomatic not flagged as symptomatic divided by total (student) vaccinated was divided by the total number
infection (child) number of infected individuals. Vaccine uptake | 0.700 0.700 <1% of individuals.
Probabilityof | 0200 | 0200 | <1% (teacher)
asymptomatic Tracker names (in abm_code.R): Vaccine uptake | 0.700 | 0.700 | <1% Tracker names (in abm_code.R):
infection (adult) symp (family) vace
Probabilityof | 0800 | 0795 | <I% Total number of infected individuals who are Vaccine 0700|0700 | <1% The total number of individuals flagged as
subdlinical flagged as sublinical ivided by total effectiveness “not susceptible” was divided by the total
infection (child) ‘number of infected individuals number of individuals flagged as vaccinated.
Probabilityof | 0400 | 0400 | <1%
sublinical

infection (adult)

Tracker names (in abm_code.R):
sub_clin

Tracker names (in abm_code.R):
susp for susceptible individuals and vace for
ted individuals.

Local Incidence | 0.000150 | 0.000150 | <1% The total number of individuals infected in
Rate (cases per the wider community was divided by the
residents per product of the total number of days run and

day) Il the total number of individuals in the model.
Local Incidence | 0.000750 | 0.000749 | <1%
Rate (cases per ‘When an individual was infected within the
residents per model (e.g., at school, not in the wider

day) community), the number of days remaining

Local Incidence | 0.001500 | 0.001497 | <1% in the model run after their infection was
Rate (cases per subtracted from the denominator of this
residents per fraction,
day)
Tracker names (in abm_code.R):
child.start.count and adult start.count for
total number of individuals infected in the
wider community, and
child.community.risk. days and
adult.community risk days for the number of
days individuals were at risk of infection
from the wider community.
Structural Checks
Household Contact Structure
Model b the
list of all uninfected individuals in inabm_code.R).
Model ifan in their but th

uninfected individuals in that household (line 412 in abm_code.R).

Model run is stopped if an infected notinfected y does not
contact any household members (ine 1286 in abm_code.R).

Model ifan in the wider v individual in their
household (line 1311 in abm_code.R).

In-School Transmissions

Model run is stopped If an infectious individual is at school on a weekend day (ine 1326 in abm_code.R).
Model run is stopped if individuals infected at school were not supposed to be present at school on that
day (lines 1345-1364 in abm_code.R). The list of individuals present in school on each given day is

determined by a separate testing function that takes into account the quarantine, isolation, and testing
policy structure in the model (lines 807-866 in abm_code.R).

Classroom Contact Structure
Model dif d by not match the
infected in their school on a given day

Formal testing



What do | do?

Using simple models to
act on complex ones

Comparing models - Benchmarking on baseline - Decision evaluation



Contact tracing models

Research Letter | Public Health
August 21, 2020

Modeling Contact Tracing Strategies for COVID-19 in
the Context of Relaxed Physical Distancing Measures

Alyssa Bilinski, MS'; Farzad Mostashari, MD2; Joshua A. Salomon, PhD3

Article | Published: 05 August 2020

Modelling the impact of testing, contact tracing and
household quarantine on second waves of COVID-19

Alberto Aleta, David Martin-Corral, Ana Pastore y Piontti, Marco Ajelli, Maria Litvinova, Matteo Chinazzi,

Natalie E. Dean, M. Elizabeth Halloran, Ira M. Longini Jr, Stefano Merler, Alex Pentland, Alessandro

Vespignani &, Esteban Moro & & Yamir Moreno

ARTICLES | VOLUME 20, ISSUE 10, P1151-1160, OCTOBER 2020

Effectiveness of isolation, testing, contact tracing, and physical distancing
on reducing transmission of SARS-CoV-2 in different settings: a

mathematical modelling study

Adam J Kucharski, PhD 2 [ « Petra Klepac, PhD « Andrew J K Conlan, PhD « Stephen M Kissler, PhD
Maria L Tang, MMath « Hannah Fry, PhD e etal. Show all authors

Comparing models
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Models may not reach the same qualitative conclusions.

Research Letter | Public Health
August 21, 2020

Modeling Contact Tracing Strategies for COVID-19 in
the Context of Relaxed Physical Distancing Measures

Alyssa Bilinski, MS'; Farzad Mostashari, MD2; Joshua A. Salomon, PhD3

Article | Published: 05 August 2020

Modelling the impact of testing, contact tracing and
household quarantine on second waves of COVID-19

Alberto Aleta, David Martin-Corral, Ana Pastore y Piontti, Marco Ajelli, Maria Litvinova, Matteo Chinazzi,

Natalie E. Dean, M. Elizabeth Halloran, Ira M. Longini Jr, Stefano Merler, Alex Pentland, Alessandro

Vespignani &, Esteban Moro & & Yamir Moreno

ARTICLES | VOLUME 20, ISSUE 10, P1151-1160, OCTOBER 2020

Effectiveness of isolation, testing, contact tracing, and physical distancing
on reducing transmission of SARS-CoV-2 in different settings: a

mathematical modelling study

Adam J Kucharski, PhD 2 & e Petra Klepac, PhD « Andrew J K Conlan, PhD « Stephen M Kissler, PhD

Maria L Tang, MMath « Hannah Fry, PhD e etal. Show all authors

Comparing models - Benchmark

Similar to other models,>® our estimates imply that contact tracing could support partial relax-
ation of physical distancing measures but not a full return to levels of contact before lockdown.

syndrome coronavirus 2 (SARS-CoV-2) transmission in the Boston metropolitan area. We find
that a period of strict social distancing followed by a robust level of testing, contact-tracing
and household quarantine could keep the disease within the capacity of the healthcare
system while enabling the reopening of economic activities. Our results show that a response

our analysis estimated that a high proportion of cases would need to self-isolate and a high
proportion of their contacts to be successfully traced to ensure an effective reproduction
number lower than 1 in the absence of other measures. If combined with moderate physical
distancing measures, self-isolation and contact tracing would be more likely to achieve
control of severe acute respiratory syndrome coronavirus 2 transmission.



And models might look quite different.
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And models might look quite different...

1) Structure
- Compartmental vs. agent basec

2) Deterministic vs. stochastic

3) Data/calibration
- On which populations (and subpopulations) were the
model trained”?

4) Parameter choices
- What levels of testing/tracing/isolation can be realistically
achieved”?

Comparing models



It's easy to fall back on simple heuristics.

1) The most complex model is the 'best model!
/) The model calibrated on data most similar to my
population is the 'best model

Can we do better?

Comparing models



Step 1: Write a (napkin) model.

~or epidemic infectious diseases, we often focus on the effective
reproduction number R;. This represents the average number
of new infections generated per infectious individual

TR, >1, incident cases grow exponentially.
e [t R, <1, incident cases decline exponentially.
TR, =1, incident cases stay constant.

Comparing models



Step 1: Write a (napkin) model.

R, = avg contacts x prob of transmission per contact
 If you increase contacts by 2, R, doubles.
|t you increase probability of transmission by 2, R,doubles.

(Sidebar: infectious diseases are one of the more complicated
cases. Often, you have even simpler linear processes)

Comparing models



Step 1: Write a (napkin) model.

Key question: Does test/tracing/isolation push R, <17

Our simple model:

initial Ry/R, without contact tracing
fraction of cases detecteo

fraction of contacts traced

percentage of traced contacts who isolate

Multiply!

Comparing models



Step 2: Fill in parameters.

_ Bilinski et. al. | Kucharski et. al.

R, without tracing

Percentage detected

Percentage traced

Percentage of traced
contacts who isolate

Additional social
distancing

R, with tracing

Comparing models



Step 2: Fill in parameters.

_ Bilinski et. al. | Kucharski et. al.

R; without tracing 2.5
Percentage detected <50%
Percentage traced 50%
Percentage of traced 1 (varied)

contacts who isolate

Additional social (varied)
distancing
R, with tracing 1.9

2. 5%(.5 (detected)*.5 (traced)+ .5 (undetected)) ~ 1.9

Comparing models



Step 2: Fill in parameters.

_ Bilinski et. al. | Kucharski et. al.

R, without tracing 2.5 2.6

Percentage detected <50% 90% of symptomatic (75%)
> 63%

Percentage traced 50% 100% HH (n = 2)

90% school, 79% work (n =
11)
52% other (n =17/)

HH attack rate: 20%
Other attack rate: 6%

Percentage of traced 1 (varied) 90% (but detected 20% into
contacts who isolate disease course)

Additional social (varied) Symptomatic self-isolation -
distancing reduces transmission by 2
R, with tracing 1.9 1.1

Comparing models



Step 3: Let's compare.

Table 3

Mean reduction in Reg under different control measures

Self- Contact Non-HH contacts who Cases who R Mean
Isolation tracing are potentially traceable have R>1 reduction in
(%) (%) Rer
No control No No NA 50% 2:6 0%
Self-isolation within home Yes No NA 40% 1-8 29%
Self-isolation outside home Yes NA NA 37% 1.7 35%
Self-isolation plus HHQ Yes HH NA 35% 16 37%
Self-isolation plus HHQ plus Yes HH and 100% 27% 12 53%
work or school contact tracing work or
school

Self-isolation plus HHQ plus Yes All 90% school, 79% work, 26% 11 57%
manual contact tracing of and 52% other

acquaintances

Self-isolation plus HHQ plus

manual contact tracing of all

Self-isolation plus HHQ plus Yes All
app-based tracing

Self-isolation plus HHQ plus Yes All
manual contact tracing of

acquaintances plus app-based

tracing

Self-isolation plus HHQ plus

manual contact tracing of

acquaintances plus limit to four

daily contacts with other

individuals

Self-isolation plus HHQ plus

manual contact tracing of

acquaintances plus app-based

tracing plus limit to four daily

contacts with other individuals

Mass testing of 5% of No NA
population per week

53% 30% 1-4 47%
90% school, 79% work, 23% 1 61%
and 52% other with

manual tracing; 53% with
app tracing

90% school, 79% work,
and 52% other

90% school, 79% work, 20%
and 52% other with

manual tracing; 53% with

app tracing

NA 49% 25 2%

Comparing models



Step 3: Let's compare.

Table 3 Can we get to 1.7?

Mean reduction in Reg under different control measures

Self- Contact Non-HH contacts who Cases who R Mean
Isolation tracing are potentially traceable have R>1 reduction in F\) J[ pu— 2 é
(%) (%) Rer

NN o 2 o « Asymptomatic: 30% of cases
' — . . (1/2 transmission risk)

Self-isolation plus HHQ plus Yes HH and 100% 27% 12 53%

work or school contact tracing work or R ~ /‘ é a m O n 9 a Sy m p
school t '

Self-isolation plus HHQ plus ~ Yes All 90% school, 79% work,  26% 11 57% "_\) J[ ~ 3 /‘ a m O n 9 Sy m p

manual contact tracing of and 52% other

acquaintances

Self-isolation plus HHQ plus Yes All 100% 21% 094 64%

manual contact tracing of all

contacts

Self-isolation plus HHQ plus  Yes All 53% 30% 1-4 47%

app-based tracing

Self-isolation plus HHQ plus Yes All 90% school, 79% work, 23% 1 61%
manual contact tracing of and 52% other with

acquaintances plus app-based manual tracing; 53% with

tracing app tracing

Self-isolation plus HHQ plus Yes All 90% school, 79% work, 21% 093 64%
manual contact tracing of and 52% other

acquaintances plus limit to four

daily contacts with other

individuals

Self-isolation plus HHQ plus Yes All 90% school, 79% work, 20% 0-87 66%
manual contact tracing of and 52% other with

acquaintances plus app-based manual tracing; 53% with

tracing plus limit to four daily app tracing

contacts with other individuals

Mass testing of 5% of No NA NA 49% 25 2%

population per week

Comparing models



Step 3: Let's compare.

Table 3

Mean reduction in Reg under different control measures

Can we getto 1.7?

Self-

Contact

Isolation tracing

Non-HH contacts who

Cases who R Mean

are potentially traceable have R>1 reduction in F\) J[ pu— 2 é

(%)

(%) Ret

No control

Self-isolation plus HHQ plus

work or school contact tracing

Self-isolation plus HHQ plus
manual contact tracing of

acquaintances

Self-isolation plus HHQ plus

manual contact tracing of all

No

Yes

Yes

Yes

HH and
work or

school

All

All

NA

100%

90% school, 79% work,
and 52% other

100%

o 2 o « Asymptomatic: 30% of cases
- (1/2 transmission risk)

R, ~ 1.6 among asymp
w11 R, ~ 3. T among symp
o « Symptomatic:

o Q0% isolate
* Pre-isolation: ~1/2 of
transmission
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Step 3: Let's compare.

Table 3

Mean reduction in R under different control measures

Self- Contact Non-HH contacts who Cases who Reg Mean
Isolation tracing are potentially traceable have R>1 reduction in
(%) (%) Rer
No control No No NA 50% 2:6 0%

Self-isolation outside home

eli-1sofation plus HHQ Yes
Self-isolation plus HHQ plus Yes HH and 100% 27%
work or school contact tracing work or

school

Self-isolation plus HHQ plus Yes All 90% school, 79% work, 26%
manual contact tracing of and 52% other
acquaintances
Self-isolation plus HHQ plus Yes All 100% 21%

manual contact tracing of all

contacts

Asymp: 0.3%1 .6 +

Undetected symp: 0./70 1°3.1 +
Detected symp: 0 /*0.9*3. 1705 = 1./

Can we getto 1.7?

R.=2.6
e Asymptomatic: 30% of cases
(1/2 transmission risk)

R, ~ 1.6 among asymp
R, ~ 3. T among symp

¢ Symptomatic:
e« Q0% isolate
e Pre-isolation: ~1/2 of
transmission

Comparing models



Step 3: Let's compare.

Table 3

Mean reduction in R under different control measures

Can we get to 0.94?

i ASYMP: 0537716 +

Self- Contact Non-HH contacts who Cases who R Mean
Isolation tracing are potentially traceable have R>1
(%) (%) Ret
No control No No NA 50% 2:6 0%
Self-isolation within home Yes No NA 40% 1-8 29%
Self-isolation outside home Yes NA NA 37% 1.7 35%
Self-isolation plus HHQ Yes HH NA 35% 16 37%
Self-isolation plus HHQ plus Yes HH and 100% 27% 12 53%
work or school contact tracing work or
school

Self-isolation plus HHQ plus Yes All 90% school, 79% work, 26% 11 57%
manual contact tracing of and 52% other
acquaintances
Self-isolation plus HHQ plus Yes All 100% 21% 094 64%

manual contact tracing of all

contacts

Undetected symp: 0./70 1°3.1 +
Detected symp: 0. /*0.9*3 1X

But what is X7

\We still cut transmission in half
from isolation = 0.5

Contact tracing cuts transmission by a
factor of 0.72 among contacts.

-> X =0.5*0.28

This gets us 0.97!

Comparing models



Step 3: Let's compare.

Table 3

Mean reduction in R under different control measures

Can we getto 1.1?

i ASYMP: 053776 +

Self- Contact Non-HH contacts who Cases who R Mean
Isolation tracing are potentially traceable have R>1
(%) (%) Ret

No control No No NA 50% 2:6 0%
Self-isolation within home Yes No NA 40% 1-8 29%
Self-isolation outside home Yes NA NA 37% 1.7 35%
Self-isolation plus HHQ Yes HH NA 35% 16 37%
Self-isolation plus HHQ plus Yes HH and 100% 27% 12 53%
work or school contact tracing work or

Undetected symp: 0./70 1°3.1 +
Detected symp: 0. /*0.9*3 1X

Contact tracing cut transmission by ~90%
among pre-isolation contacts. = 5* 25

What fraction are traced”?

T-( 1117 06+.5%17%.06)/(2*.2 +
11*%06+17%06) ~ 72

> X =.5%.72*.28 + .28)

This gets us 1.17!

We felt comfortable telling policymakers to focus on community testing
and tracing rates to predict contact tracing effectiveness.

Comparing models



So, now let’s try it with bunch of complicated
models averaged together.

Benchmarking on baseline



COVID ForecastHub ensemble

COVID-19
ForecastHub

Ensemble models average together forecasts of cases,
hospitalizations, and deaths submitted by teams.

What is the simplest thing ensemble models could be doing?

Benchmarking on baseline



How do simple and complex models compare?

1- to 4-week horizon of United States cases

Cases truth data shown by dotted line

Baseline

- o = N

1- to 4-week horizon of United States hospitalizations
Hospitalizations truth data shown by dotted line

Baseline

Benchmarking on baseline - [Decision:



How do simple and complex models compare?

1- to 4-week horizon of United States cases 1- to 4-week horizon of United States hospitalizations
Cases truth data shown by dotted line Hospitalizations truth data shown by dotted line
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How do simple and complex models compare?

1- to 4-week horizon of United States hospitalizations
Hospitalizations truth data shown by dotted line

Baseline

Benchmarking on baseline



How do simple and complex models compare?

1- to 4-week horizon of United States hospitalizations
Hospitalizations truth data shown by dotted line

Baseline

Benchmarking on baseline



Helps us understand how models are likely to struggle

2 wk horizon 4 wk horizon
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There is a strong temptation to evaluate decisions based
on outcomes.

Decision evaluation



There is a strong temptation to evaluate decisions based

on outcomes.

Quality of decision vs. quality of outcome

Quality of Outcome
Good Bad
Good Yo;geé:l}ccil:leﬁreﬂ You were unlucky
Quality of
Decision i
You decided poorly
Bad You were lucky and did poorly

Decision evaluation



Napkin math for decision evaluation

a What did (or could) you have known when making the decision?
e What was (or should have been) your objective function?

e What was the expected value of your decision?

Decision evaluation



1976 swine flu (HTN1)

e In 1976, there was a swine flu (HTNT1) outbreak on a military
base that killed 1 and hospitalized 13.

« President Ford announced a plan to vaccinate every in the
country.

* 43 million individuals were vaccinated in 10 weeks.

« Some (perhaps a few hundred) experienced Guillain-Barre
Syndrome (1/100K increased risk).

And no pandemic materialized...

Decision evaluation



1976 swine flu (HIN1)

Swine Flu Fiasco

‘By Harry Schwartz

The sorry debacle of the swine flu
-vaccine program provides a fitting end

point to the misunderstandings .and

misconceptions that have marked Gov-
ernment approaches to health care
during the last, eight years, when
Washington power has been shared
between. a Republican White House
and a Democratic Copgress.

Last February and March, on the

flimsiest of evidence, President Ford
and the Congress were panicked into
believing that the country stood at the
threshold of.a killer-flu epidemic, one
that might claim millions of lives as
did the much-cited influenza pandemic
of 1018.1019.

Today, there is no sign whatsoever
of anything approaching a swine flu
epidemic;. but there is growing appre-
hension that the millions of dollars of
Federal money spent and the vast
vaccinati rogram pushed with. all
of Wash%ns energies may have
resulted in the death of some persons
and sickened many more. In_short,
_there seem to have been significant
costs without any visible benefits.

Ariy reasonable effort'to assign re-
sponsibility for this state of sffairs

knows comparatively little about the

origin and spread of influenza epi-
demics. In a sense, the Public Health

. Service and the .Center for ‘Disedse

Control reacted as the Pentagon tends
to do. Both health agencies assumed

*the worst that could Happen and urged

utnon on that worst assumption, just
as the Pentagon traditionally wants to
have' forces capable of fighting. three
major wars simultaneously.

e The sel-interest of the Govem-
ment health bureaucracy, which saw
in the swine flu threat the ideal chance
to impress th: nation with the capabil-
ities of saving money and lives by
preventing ' cisease. The Center for
Disase‘Cont:ol in panicular has long
wanted to increase the size of its
empire "ard multiply its budget by
becomirg ‘the’ Government cénter for
health education and disease preven-
tion. Funds used for ‘that purpose
inevitably tzke money away from
those whose job is actually totreat
sick - people. But the potentials of
health education and disease preven-
tion are still unproved—and perhaps
only-moderate at best. -

It is possible, of course, that tha
country will still have-a.swine, flu

. epidemic. But more and more expert

opinion ‘is .shifting to the idea that

such an epidsmic. if it comes at all.

The Presidential Public Health Failure History
Forgot

In the 1970s, the federal government attempted to vaccinate every American
against the swine flu. It did not go well.

@ By Jeffrey Young

All medicines can cause side effects, including vaccines. Immunization programs like those
for polio and smallpox are designed with that in mind, and with an aim toward protecting far
more people than they harm. In the case of swine flu, there were only risks and no benefits,
because an outbreak never occurred.

IMMUNE RESPONSE | VACCINE

The fiasco of the 1976 ‘swine flu affair’

Decision evaluation



Stepping back...

Expected value = P(Pandemic) = Value of vaccination in pandemic +
P(No pandemic) = Value of vaccination without pandemic

Expected value

1
= 1% * 300K lives saved (5 COVID deaths scaled to 1976 population) +

99% * Value of vaccination without pandemic

Expected value = 3bn (assuming $10m VSL) +
99% * Value of vaccination without pandemic

Expected value = 3bn (assuming $10m VSL) —
99% * 38M (Guillan — Barre syndrome)

We shouldn’t think of this as a failure!!

Decision evaluation



Expect to be wrong sometimes...and pick your direction.

Adaptive metrics for an evolving pandemic: A dynamic approach
to area-level COVID-19 risk designations

Alyssa M. Bilinski®', Joshua A. Salomon®{2}, and Laura A. Hatfield"

States
‘ Neutral | | Don't cry wolf (0.5x FN) ‘ | Better safe than sorry (0.5x FP)
Training Test Training Test Training Test
Training MR Test MR Training MR Test MR Training MR Test MR
Adaptive: CHO 3 5 3
Adaptive: CHOZ 3 5 2
Adaptive: CHOD 6 9 5
Adaptive: HZ 1 3 3

Simplified adaptive: HZ
Community Levels

4

CHO

HO

CH

H

C

Prevalence 68

AM/X00 L/yresp | <

QI GOINNG R
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When unpacking any decision...

Quality of decision vs. quality of outcome

Quality of Outcome
Good Bad
Good Yo;je;};ic:;le\lx{ell You were unlucky
Quality of I
Decision ;
You decided poorly
Bad You were lucky and did pootly

More likely in high-uncertainty contexts!!

Decision evaluation



Conclusions



Takeaways

Modelers

a —specially for policy decisions, start with the simplest model

e Even if rou don't stay there, benchmark your complex model against
baseline - both for evaluating performance and for interpretability.

Teaching napkin math - and building model intuition - is just as
important as teaching high-performance computing.



Takeaways

Policymakers

Ask guestions about methods and mechanisms, rather than just
results.

e Understand key sensitivities.

For Both

G Good policy modeling starts a conversation rather than ending it



And one more...

How often do you see statements like ...
"We need more research”

"There is insufficient evidence to draw
definitive conclusions”



Complexity is neither a license to do nothing...

A favorite means of escaping the solution
to any problem is to declare it too
complex for solution. This absolves us
from attempting solution. ..

—Pearl S. Buck




...nor an excuse to over-specify
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“No, no. ... Not this one. Too many bells and whistles.”



We can calibrate investigations and our synthesis of the evidence - without
sacrificing scientific rigor - to the needs they are intended to serve.
Complex models help us learn about the world, but
sometimes a little napkin math can help us with this task.

Indeed, sometimes a napkin is all that is needed.



5 Potentia| increase in antibiotic consumption...
. ededle M50 Year| R
A‘,: .,:g‘“ . €arly neeq:

* Unaware 3 Yearly act Given the DoxyPEP tria|
¢ 253 teosisd'agnosls. 5.5M (2022 . PE);F;RU;L Mand g . inclusion criteria, we
all (assume n one o M O denty AR il 3 estimate up to 0.9 million
Rltmen MSM may be eligible (0,53

Assume 30% adoption Average o

among this population, doxyPEP: 4 _ "M dosgs of
similar to uptake of dosesper = doxycycline
HIV PrEP among those month per month

Nevzvgy infected: 1.3 re‘:":‘((frfgg;‘;‘é ol : million PLWH+0.36 million  eligible
; -3 tests x 1.3\ = 33M * [not counted: South America a LR L)
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Europe)
021

Cases of STIs averted:

monthly incidence of STis among those on DoxyPEP*(1-RR)*DoxyPEP population
SUM: =220 M tests needed, then 22 Sum: ~135 M tests conducted

~27,000 doses of antibiotics per month
*Many assumptions! oy caon

Roster and Grad, Lancet Microbe 2023 m
e 6]
@/ Q (-]

Grad, Yonatan (External)

Questions?



How did models do?

Strengths

« Shed light on "what if" scenarios in
time-sensitive contexts when
‘doing nothing” was a risky choice
« Qualitative insights

16 March 2020 Imperial College COVID-19 Response Team

Report 9: Impact of non-pharmaceutical interventions (NPIs) to
reduce COVID-19 mortality and healthcare demand

Neil M Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin,
Sangeeta Bhatia, Adhiratha Boonyasiri, Zulma Cucunubd, Gina Cuomo-Dannenburg, Amy Dighe, llaria
Dorigatti, Han Fu, Katy Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley, Lucy C Okell, Sabine van
Elsland, Hayley Thompson, Robert Verity, Erik Volz, Haowei Wang, Yuanrong Wang, Patrick GT Walker,
Caroline Walters, Peter Winskill, Charles Whittaker, Christl A Donnelly, Steven Riley, Azra C Ghani.

SCIENCE ADVANCES | RESEARCH ARTICLE

CORONAVIRUS

Test sensitivity is secondary to frequency
and turnaround time for COVID-19 screening

Daniel B. Larremore'2*, Bryan Wilder®, Evan Lester*®, Soraya Shehata®®, James M. Burke®,
James A. Hay’*%, Milind Tambe?, Michael J. Mina’**", Roy Parker®*® 1%

o Open. &

Original Investigation | Public Health
Assessment of SARS-CoV-2 Screening Strategies to Permit the Safe Reopening
of College Campuses in the United States

A.David Paltiel, PhD; Amy Zheng, BA; Rochelle P. Walensky, MD, MPH

IHME Model Chris Murray
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Preliminary sketches do not always pan out

Coherence checks Understanding surprising results



Routine testing for HIV

A model-based assessment
of the cost-effectiveness of
expanded HIV testing in
the US.

Key question: How does
the cost-effectiveness
estimate vary as a function
of the prevalence of
undetected HIV in the
population?

Coherence checks

The American Journal of Medicine (2005) 118, 292-300 e
THE AMERICAN

i
%i'i JOURNAL of

MEDICINE e

ELSEVIER

CLINICAL RESEARCH STUDY

Routine human immunodeficiency virus testing:
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KEYWORDS: BACKGROUND: The Centers for Disease Control and Prevention guidelines recommend human
HIV/AIDS; i iciency virus (HIV) testing, and referral for all patients in hospitals with an HIV
HIV EIA; prevalence of =1%. The 1% screening threshold has not been critically examined since HIV became
Testing; effectively treatable in 1995. Our objective was to evaluate the clinical effect and cost-effectiveness of
Screening; current guidelines and of alternate HIV prevalence thresholds.

METHODS: We performed a cost-effectiveness analysis using a computer simulation model of HIV
screening and disease as applied to inpatients in U.S. hospitals.

RESULTS: At an undi inpatient HIV p of 1% and an overall participation rate of
33%, HIV ing i mean quality-adjusted life by 6.13 years per 1000 inpatients,
with a cost-effectiveness ratio of $35 400 per quality-adjusted life-year (QALY) gained. Expansion of
screening to settings with a prevalence as low as 0.1% increased the ratio to $64 500 per QALY gained.
Increasing counseling and testing costs from $53 to $103 per person still yielded a cost-effectiveness
ratio below $100 000 per QALY gained at a prevalence of undiagnosed infection of 0.1%.

CONCLUSION: Routine inpatient HIV screening programs are not only cost-effective but would
likely remain so at a prevalence of undiagnosed HIV infection 10 times lower than recommended
thresholds. The current HIV counseling, testing, and referral guidelines should now be implemented
nationwide as a way of linking infected patients to life-sustaining care.
© 2005 Elsevier Inc. All rights reserved.
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Before getting started
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Hypotheses:

As prevalence — 0
ICER — oo.

As prevalence — 100%
ICER — 0.

In the “policy zone” ~linear
returns, with cut-off prevalence in
the range 1% to 4% depending
on WTP threshold.
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Study investigators were surprised by the results
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... though they were consistent with other studies

Routine HIV Screening in France: Clinical Impact and
Cost-Effectiveness

Yazdan Yazdanpanah*3%, Caroline E. Sloan®, Cécile Charlois-Ou®, Stéphane Le Vu’, Caroline
Semaille®*’, Dominique Costagliola®®'%'", Josiane Pillonel’, Anne-Isabelle Poullié'?, Olivier Scemama'?,

Sylvie Deuffic-Burban'?, Elena Losina®'*"%, Rochelle P. Walensky**'%'?, Kenneth A. Freedberg®*'%'7,
A Dauvid Daltial8

Cost-Effectiveness of Screening for HIV
in the Era of Highly Active Antiretroviral Therapy

Gillian D. Sanders, Ph.D., Ahmed M. Bayoumi, M.D., Vandana Sundaram, M.P.H.,
S. Pinar Bilir, A.B., Christopher P. Neukermans, A.B., Chara E. Rydzak, B.A.,
Lena R. Douglass, B.S., Laura C. Lazzeroni, Ph.D., Mark Holodniy, M.D.,
and Douglas K. Owens, M.D.
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Figure 1. Effect of undiagnosed HIV prevalence on the cost effi a il routine, y HIV test vs. “current

practice”, with base case incidence. Incidence rates are as follows: general ion, 0.01/100PY; Is, 0.01/100PY; French Guyana,
0.35/100PY; MSM, 0.99/100PY; and IDU, 0.17/100PY. MSM: men who have sex with men; IDU: injection drug users; PY: person-year.
doi:10.1371/journal.pone.0013132.g001
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Study investigators were surprised by the results
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