W) Check for updates

Original Research Article i P ,
Medical Decision Making

Medical Decision Making
1-15

Forecasting Local Surges in COVID-19 Artice revse sulngs:

sagepub.com/journals-permissions

Hospitalizations through Adaptive DO 1017027258505 4lesds
Decision Tree Classifiers S Sage

Rachel E Murray-Watson(, Xavier Guaracha®,
Alyssa Bilinski(>, and Reza Yaesoubi

Introduction. During the COVID-19 pandemic, many communities across the United States experienced surges in
hospitalizations, which strained the local hospital capacity. Some risk metrics, such as the Center for Disease Control
and Prevention’s (CDC’s) Community Levels, were developed to predict the impact of COVID-19 on the
community-level health care system based on routine surveillance data. However, they had limited utility as they
were not routinely updated based on accumulating data and were not directly linked to specific outcomes, such as
surges in COVID-19 hospitalizations beyond local capacities. Methods. In this article, we evaluated decision tree clas-
sifiers developed in real time to predict surges in local hospitalizations due to COVID-19 between July 2020 and
November 2022. These classifiers would have provided visually intuitive and interpretable decision rules and, by
being updated weekly, would have responded to changes in the epidemic. We compared the performance of these
classifiers with that of logistic regression and neural network models using various metrics, including the area under
the receiver-operating characteristic curve (auROC) and the area under the precision-recall curve (auPRC). Results.
Decision tree classifiers achieved an auROC of >80% for most pandemic weeks and outperformed the CDC’s Com-
munity Levels in predicting high hospital occupancy. The auPRC, sensitivity, and specificity of the classifiers varied
more substantially over time (between 20% and 100%) and in sync with pandemic waves. Decision tree classifiers
demonstrated similar performance compared with logistic regression and neural network models while presenting
more interpretable classification rules. Conclusions. Using routinely collected hospital surveillance data, decision tree
classifiers can be adaptively updated to predict surges in local hospitalizations. However, the sensitivity and specifi-
city of these classifiers could change markedly during different pandemic waves.

Highlights

® A major concern during the COVID-19 pandemic was the risk of exceeding local health care capacity due to
COVID-19-related hospitalizations.

e To assess this risk and inform mitigating strategies, several risk assessment tools were developed during the
pandemic. Many of these tools, however, did not predict local outcomes, were not updated as the pandemic
progressed, and/or were not interpretable by decision makers.

e We propose an adaptive framework of decision tree classifiers to predict whether COVID-19-related
hospital occupancy would exceed a given capacity threshold. These classifiers demonstrated reasonable and
stable prediction performance over time. However, their sensitivity and specificity may change substantially
over the course of pandemic waves.
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When COVID-19 emerged in the United States in 2020,
it proved an immediate threat to health care systems.
Rapid surges in hospitalizations threatened to overwhelm
the health care capacity and compromise the standard of
care and patient health outcomes.' Even after vaccina-
tions were introduced in late 2020, many communities
remained at risk of intermittent surges in COVID-19 hos-
pitalizations due to low rates of vaccination, waning
infection- and vaccine-induced immunity, and seasonal
changes in transmission dynamics.>>

To assess the risk of surges in hospitalizations, signifi-
cant efforts were made to predict the trajectory of the pan-
demic,* including the COVID-19 Forecast Hub,’ the
Scenario Modeling Hub.’® and the IHME COVID-19 Fore-
cast Model.” However, most of these predictions are made
available at the state or national levels,* which reduces their
utility in more local settings, where the pandemic trajectory
may bear little resemblance to that of the nation or state.
Hence, there was a need among local policy makers for
tools that would convert the data collected by surveillance
systems into meaningful predictions for their area.

One attempt at such a tool was the Center for Disease
Control and Prevention’s (CDC’s) COVID-19 Commu-
nity Levels® (replaced with the COVID-19 Hospital
Admission Rate’ and the COVID-19 County Check'® in
2023), which was designed to indicate when there may be
an upcoming strain on health care systems. The COVID-
19 Community Levels were based on the number of new
weekly COVID-19 cases, weekly hospital admissions due

School of Public Health, Imperial College London (REM-W); Philip
R. Lee Institute for Health Policy Studies, University of California San
Francisco, San Francisco, CA, USA (XG, RY); Department of Health
Services, Policy and Practice, Brown University School of Public
Health, Providence, RI, USA (AB); and Department of Epidemiology
and Biostatistics, University of California San Francisco, San Fran-
cisco, CA, USA (RY). The authors declared no potential conflicts of
interest with respect to the research, authorship, and/or publication of
this article. The authors disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this article:
Research reported in this publication was supported by the National
Institute of Allergy and Infectious Diseases of the National Institutes
of Health under awards R21AI173746 and RO1AI153351 to RY. The
content is solely the responsibility of the authors and does not necessa-
rily represent the official views of the National Institutes of Health.

to COVID-19, and weekly inpatient beds occupied by
COVID-19 patients and predicted whether the Commu-
nity Level would be low, medium, or high. While these
metrics were chosen for their correlation with future high
mortality and hospital occupancy,® they did not directly
predict any specific outcome of interest.!' In addition, the
thresholds for the Community Levels were chosen once
and not updated as the pandemic progressed or new cor-
onavirus strains became dominant. This limited the over-
all utility of the Community Levels tool in the long term.
Previous work has attempted to address these issues by
using regression models that are continuously updated to
predict concrete outcomes (e.g., mortality level).'> While
logistic regression models are relatively interpretable, they
do not provide the reasoning to understand why the
model predicted a certain outcome (e.g., hospital capacity
to be exceeded) for a given set of feature values.

In this article, we investigate whether accurate deci-
sion tree classifiers could be developed to predict local
surges in COVID-19 hospitalizations. Decision tree clas-
sifiers are machine learning models that provide simple
and interpretable classification rules to make predic-
tions.!'*!* They resemble the threshold-based, flowchart-
like structure of the CDC Community Levels, which
makes them easy to use and interpret by local policy mak-
ers. Using decision tree classifiers, however, allows us to
explicitly link the surveillance data to the outcome of
interest, which here is to predict whether local hospital
occupancy due to COVID-19 patients would exceed a set
threshold. To develop these decision tree classifiers, we
use data collected from US county surveillance systems
and evaluate their performance during different waves of
the pandemic, spanning from July 2020 to November
2022. Before this period, data were not routinely collected
from each county in the United States. We also compare
the performance of these decision tree classifiers with that
of CDC’s Community Levels and predictions provided by
logistic regression and neural network models.

Method
Overview

From July 2020, several COVID-19 indicators (e.g.,
deaths, cases, hospital admissions) were collected
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through surveillance systems to monitor and predict
trends in the pandemic.'>'® Our goal is to use these indi-
cators and metrics as features in decision tree classifiers
to predict whether local hospital capacity is expected to
exceed in the short term due to surges in COVID-19
hospitalizations.

We consider 4 groups of classifiers that differ based
on the predictors (features) they use to predict whether
local hospital capacity would be surpassed in 3 wk from
the current week. These models are described in detail
below. To develop and evaluate these models, we used
data collected between July 15, 2020, and November 7,
2022, a 123-wk period. Before July 2020, data were not
routinely collected and reported. In December 2022,
there was a change in hospitalization reporting guide-
lines, and data were reported to the CDC’s National
Health Safety Network rather than to the Department of
Health and Human Services. After this period, there
were changes in the quality of the data being reported.
Hence, we focused our analysis over the period July 15,
2020, to November 7, 2022.

For a given week ¢, we train decision tree classifiers
using data collected between week 1 through week ¢ — 1.
We then use the data collected in week ¢ to predict the
outcome in week 7 + 3. For example, at the beginning of
week ¢ = 10, we use the data collected through week 9 to
develop models to predict whether hospital capacity
would be exceeded in week 13. To evaluate how the per-
formance of these classifiers changes throughout the
pandemic (especially during the phases in which novel
variants emerge), we repeat this procedure for every
week t € {5,6,7...,120}.

Data

We obtained COVID-19 hospital admissions, occupancy,
and intensive care unit (ICU) occupancy data from the
Department of Health and Human Services'® and the
data on cases and deaths from The New York Times."®
Only cases confirmed by a reverse-transcriptase polymer-
ase chain reaction test were included in the definition of
“case.” We followed the procedures outlined in previous
studies for data preprocessing, including the aggregation
of weekly observations and the imputation of missing
values.'!!2

To account for patients leaving their county of resi-
dence to access health care, we aggregated data by health
services areas (HSAs)!” consistent with the CDC’s Com-
munity Level calculations. We compiled data at the mid-
point of each week. A total of 804 HSAs were included
in the analysis; for each of the classifiers, we developed,

< 1.5% of the health service areas were omitted from the
data set due to missing data.

Outcomes

The outcome of interest was whether the COVID-19—
caused hospital occupancy would exceed 15 per 100,000
population in exactly 3 wk. The capacity threshold of 15
per 100,000 population is calculated in prior studies and
falls in the middle of the CDC Community Level’s
“medium” risk assessment for the hospital admissions
indicator'® 2" (Supplementary Figure S1). We chose the
3-wk period for consistency with the CDC’s Community
Levels.®'> However, we note that knowledge of hospital
capacity in the preceding weeks is also useful to policy
makers. Consequently, we considered whether this out-
come occurs in any week during the interval [t + 1,¢ + 3]
as a sensitivity analysis. This time period skips the imme-
diate next week but maintains a relatively short period
between the training and target weeks.

In addition to the initial threshold of 15 cases per
100,000 population over a 3-wk period, we performed a
sensitivity analysis using alternative threshold values and
outcome periods.

Features

The prediction models we considered used all or a subset
of the following features:

1. number of COVID-19 cases per 100,000 population
in the last week,

2. number of COVID-19 deaths per 100,000 popula-
tion in the last week,

3. number of COVID-19-related hospital admissions
per 100,000 population in the last week,

4. number of hospital beds occupied by COVID-19
patients per 100,000 population in the last week,

S. number of ICU beds occupied by COVID-19
patients per 100,000 population in the last week,

6. portion of hospital beds occupied by COVID-19
patients in the last week,

7. change in each of the aforementioned metrics in the
last week, and

8. whether the hospital occupancy by COVID-19
patients exceeded the selected capacity threshold in
the last week.

Decision Tree and Benchmark Classifiers

We considered 4 broad categories of decision tree classi-
fiers, which differ in the features they include to predict
whether hospital capacity will be exceeded:
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1. “naive” classifier that uses only a binary variable of
whether the current hospital capacity threshold is
exceeded;

2. “CDC optimized” classifier that uses the same fea-
tures included in the CDC Community Levels (i.e.,
new weekly COVID-19 cases, hospital admissions,
and the percentage of inpatient beds used by
COVID-19 patients);

3. “reduced” classifier, which uses features related to
hospital admissions, hospital and ICU occupancy,
but not cases or deaths (because as of mid-2023, the
county-level case and death data were no longer rou-
tinely reported'?); and

4. “full” classifier that uses all features listed in the pre-
vious section.

We compared the performance of these classifiers with
that of the CDC’s Community Levels (Supplementary
Figure S1), which were developed using all data collected
between March 1, 2021, and January 24, 2022.% To mea-
sure the performance of Community Levels, we evaluated
it over the period from March 3, 2022, to November 20,
2022, during which its use was encouraged by the CDC.

We also note that the Community Levels designate
an area as “low,” “medium,” or “high” risk; hence, to
evaluate its ability to predict surges in COVID-19 hospi-
talizations, we counted all weeks in which the set hospita-
lization threshold was exceeded as equivalent to a “high”
community level and weeks in which it was below as
equivalent to “medium/low.”

We compared the performance of decision tree classi-
fiers with logistic and neural network models that use the
same features as the reduced and full models.

Model Development

For each week ¢ between July 15, 2020, and November 7,
2022, we use the data collected from all HSAs from week
1 to week ¢t — 1 as a single training set to develop our
classification trees. We used 10-fold spatial and temporal
cross-validation to optimize the hyperparameters of each
classifier for each week (see §S1 in the Supplementary
Information for details). To ensure that the resulting
decision trees were easy to interpret, we restricted the
depth of the trees to less than 5 layers and then deter-
mined the optimal depth through hyperparameter tun-
ing. This also ensures that the decision tree classifiers use
the most relevant features to inform their predictions.
Since the data from larger populations are expected to
be less noisy compared with data from smaller popula-
tions, we included instance weights in the model-fitting
procedure, based on the HSA population. In addition, to

account for class imbalance in the outcome, we trained
the model using “balanced” class weights, with higher
weights assigned to the minority class in the decision tree
classifier’s function.?!*?

Although we used 123 wk of data, due to the 3-wk
prediction task and the need for 1 wk of test data and 1
wk for initial training, we could train only 117 decision
tree classifiers.

We developed our decision tree classifiers using the
scikit-learn package in Python.?

Model Evaluation

In line with the Transparent Reporting of a multivari-
able prediction model for Individual Prognosis or Diag-
nosis (TRIPOD) recommendations,”* model validation
was performed using temporal validation, in which our
dataset was partitioned into training and testing subsets
based on time. To evaluate the performance of a classi-
fier, we calculated the area under the receiver operating
curve (auROC) and the area under the precision-recall
curve (auPRC) based on data from all HSAs collected
during the projection period. A classifier that provides
100% correct predictions has an auROC of 1, and a clas-
sifier that randomly guesses the outcomes has an auROC
of 0.5. The auPRC metric is particularly useful when the
dataset is imbalanced, which was the case for a consider-
able number of weeks during the pandemic. To investi-
gate regional variation in the performance of our
classifiers, we also present the area under the receiver-
operating characteristic curve (auROC) scores for each
HSA, which we calculated based on predictions made by
each weekly classifier for a given HSA throughout the
pandemic weeks.

The auROC and auPRC metrics are agnostic to the
selected classification threshold and assumes that true/
false positives and true/false negatives are equally desir-
able outcomes. In reality, a predicted surge in hospital
capacity will cause different responses among policy
makers, each with an associated cost. Under this assump-
tion, the values of true and false predictions may differ.
To account for any differences in preferences that policy
makers may have, we additionally calculated the net ben-
efit,>> a metric that allows differences in the weighting of
true and false positives, facilitated by an “exchange”
parameter, w. The net benefit function incorporating
true-positive and false-positive rates is given by

NBp(w,p) = TP(p) — oFP(p), (1)

where TP(p) is the true-positive rate and FP(p) is the
false-positive rate when the classification threshold p is
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selected (a classifier with classification threshold p pre-
dicts the hospital capacity would be exceeded if the esti-
mated the probability of exceeding capacity is greater
than p). A true-positive result means that the model has
correctly predicted the surge in hospital capacity; hence,
any action undertaken by the policy maker to avoid such
a surge was justified and could have prevented loss in
population health. In contrast, a false-positive result
could waste resources if it leads to using mitigating stra-
tegies. Equation 1 allows policy makers to weigh the eco-
nomic costs of unnecessary action (wFP(p)) with the
health benefits of justified action (7P(p)). These out-
comes, however, depend on the classification threshold
p- To find the optimal classification threshold for a given
w, we solve

NBp(w) = max[TP(p) — wFP(p)];

using a grid search over values of p.

The above definition of net benefit does not consider
the health and economic consequences of true and false
negatives. True negatives mean that policy makers can
avoid implementing costly interventions, and false nega-
tives may risk overwhelming hospital capacity. To
account for these factors, we also evaluate our classifiers
using the following version of net benefit:

NBpy(w,p) = [TP(p) — FN(p)] — o[FP(p) — TN(p)].
(2)

For a given w, we use a grid search to find the optimal
classification threshold that maximizes the above
function.

To use these net benefit functions, we need to select
the value of the penalty parameter w. In practice, w is
determined according to the decision maker’s preference
over the consequences of true or false positives and true
or false negatives. For example, in the net benefit func-
tion NBp(w,p), the penalty value w could be set to 10 if
the consequence of a false positive is 10 times more
important than the consequence of a true positive for the
decision maker. In the analyses presented below, we vary
w over the range 0 to 10.

Finally, we used Shapley Additive exPlanations
(SHAP) values to evaluate the contribution of each fea-
ture to predictions.?® SHAP values provide a way to allo-
cate the contribution of each feature to a model’s
prediction by considering all possible combinations of
feature values across instances.?” It provides insight into
changes in model performance that may occur when
some features are excluded. We use the shap package in

Python to calculate the SHAP values and present the
SHAP summary plot.?” In this plot, we present the
SHAP values for each prediction period across all 117
reduced classifiers.

Results

Between July 15, 2020, and November 7, 2022, there was
a substantial variation in the burden of COVID-19
across HSAs (Figure 1). Throughout this 123-wk period,
on average, 78% of HSA weeks surpassed the 15
COVID-19 patients per 100,000 hospitalized threshold
(dashed black curve in Figure 1C). COVID-19 cases,
new hospital admissions, hospital beds, ICU beds occu-
pied by COVID-19 patients, and the percentage of hospi-
tal beds occupied by COVID-19 patients were positively
correlated with surpassing the hospitalization threshold
(Table 1).

Across all decision tree classifiers, the auROC was
always greater than 0.5, including for the naive classi-
fiers, which used just 1 feature (Figure 2A). The full deci-
sion tree classifiers generally had the highest auROC,
although the reduced decision tree classifiers were com-
petitive despite not using features related to cases or
deaths. The CDC optimized, reduced, and full decision
tree classifiers had an auROC of >0.8 across all weeks
(Figure 2A).

The full and reduced decision tree, logistic regression,
and neural network models demonstrated comparative
performance in terms of auROC and auPRC metrics
(Figure 2). The auROC of full and reduced classifiers
was relatively consistent across different waves of the
pandemic (Figure 2, first column). However, the auPRC
changed more substantially during pandemic waves. The
highest auPRC scores were achieved when a high pro-
portion of HSAs exceeded the 15 per 100,000 hospitali-
zation threshold (Figure 2, second column). Across all
models, around week 48, there was a decrease in the
auPRC score, which coincided with when the omicron
strain began circulating in the United States. There was
additionally a decrease in auPRC before the peak during
the omicron wave (around week 90) (Figure 2, second
column).

For all classification methods (decision tree, logistic
regression, and neural networks), the reduced models
performed similarly to the full models based on auROC
and auPRC (Figure 2). However, in contrast to full mod-
els, reduced models did not use features related to cases
or deaths, making them more parsimonious. As such, for
the remainder of our analysis, we focus on reduced classi-
fiers. The sensitivity, specificity, and accuracy of reduced
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Figure 1 Weekly COVID-19 indicators between July 15, 2020, and November 7, 2022, reported by health services areas (HSAs).
The purple and blue boxes show the period when the delta and omicron variants were dominant, respectively. The hatching
shows the data used to develop the Centers for Disease Control and Prevention’s Community Levels. The black curve shows the
mean across all HSAs for the given indicator. The dashed curves in panels C and F represent the proportion of HSAs with
hospital occupancy greater than 15 beds per 100,000 population. (A) COVID-19 cases. (B) COVID-19 deaths. (C) Hospital beds
occupied by COVID-19 patients. (D) COVID-19 admissions. (E) Intensive care unit beds occupied by COVID-19 patients. (F)
Percentage of hospital beds with COVID-19 patients.

Table 1 Mean and Standard Deviation of Weekly COVID-19 Observations Stratified by Whether the Hospital Occupancy Is
Surpassed in 3 wks’ Time or Not

Surpassed Not Surpassed
Feature Mean SD Mean SD
Cases 143.6 290.4 53.4 122.9
Deaths 1.8 32 1.4 3.0
Hospital beds 37.9 87.3 1.4 4.3
Admissions 9.4 21.6 2.3 9.1
ICU beds 1.75 3.5 0.08 0.44
Percent beds occupied by COVID-19 patients 4.3 9.4 0.023 0.073
Change in cases -1.4 169.0 2.5 88.1
Change in deaths 0.059 1.1 -0.16 1.3
Change in hospital beds —0.098 41.6 0.016 43
Change in admissions -0.19 14.7 0.36 9.1
Change in ICU beds —0.0057 1.64 0.0076 0.38
Change in percentage beds occupied by COVID-19 patients —0.00022 0.071 0.000024 0.0064

ICU, intensive care unit; SD, standard deviation.
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Figure 2 Performance of decision tree, logistic regression, and neural network classifiers to predict whether the COVID-19
hospital occupancy is expected to exceed 15 per 100,000 in exactly 3 wk. The purple and blue boxes show the period when,
respectively, the delta and omicron variants were dominant. The gray dashed line shows the proportion of health services areas
that exceed the hospitalization threshold of 15 per 100,000 population for a given week. (A) and (B) are the decision tree,

(C) and (D) the logistic regression, and (E) and (F) the neural network. (A), (C), and (E) are the auROC and (B), (D), and

(F) the auPRC.
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Figure 3 Sensitivity, specificity, accuracy, and the normalized Matthews correlation coefficient (MCC) for the reduced
classification models. The purple and blue boxes show the period when, respectively, the delta and omicron variants were
dominant. The gray dashed line shows the proportion of health services areas that exceed the hospitalization threshold of 15 per
100,000 population for a given week. (A) Sensitivity. (B) Specificity. (C) Accuracy. (D) Normalized MCC.

decision tree, logistic regression, and neural network
models varied over pandemic weeks (Figure 3A—C). The
sensitivity of all models coincided with the proportion of
HSAs with exceeded hospital capacity, and it dropped
substantially during weeks when less than 50% of HSAs
exceeded the hospital capacity (Figure 3A). All models
demonstrated similar and stable Matthews correlation
coefficient over pandemic weeks (Figure 3D).

The accuracy of predictions varied across scenarios in
which the continuation of a surge or nonsurge state is

predicted as opposed to scenarios in which a change in
the current state is predicted (Table 2). All classifiers
achieved high accuracy (>85%) in predicting the conti-
nuation of a surge (Table 2, last row) and in predicting
the continuation of a nonsurge state (first row). How-
ever, they performed worse in predicting changes in the
surge status (second and third rows).

Based on the performance metrics we considered
above, no single method demonstrated a clear advantage
over the others. Hence, in the following, we focus on
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Table 2 Accuracy of Prediction by the States in the Current Week and in 3 wk

Current State  State in 3 wk CDCCL DT Reduced DT Full LRReduced LRFull NN Reduced NN Full

Under Under 82% 91% 90% 93% 93% 95% 96%
Over 79% 75% 77% 71% 75% 66% 63%

Over Under 44% 69% 71% 71% 76% 80% 80%
Over 94% 89% 89% 88% 89% 84% 83%

CDC CL, Centers for Disease Control and Prevention’s Community Levels; DT, decision tree classifiers; LR, logistic regression

models; NN, neural network models.

Figure 4 Performance of reduced decision tree classifiers across all counties. The area under the receiver-operating characteristic
curve (auROC) was calculated by health services area using the predictions from all 117 reduced classifiers. The hatching
indicates where there were no true-negative instances with which to calculate the auROC, and the auROC is recorded as “NA.”
See Supplementary Figure S2 for the spatial performance of classifiers that includes case and death data.

decision tree models as they are more interpretable and
easier to use in practice.

For 76% of the counties, the auROC that could be
calculated using the reduced decision tree classifiers
throughout the study period exceeded 0.80 (Figure 4).
However, for about 23% of counties, an auROC could
not be calculated as across each 117 outcome weeks, the
hospital beds occupied by COVID-19 patients either
always or never exceeded the 15 per 100,000 threshold.
Thus, there was no “true negative” with which to calcu-
late the auROC. The full decision tree model presented
similar spatial performance to the reduced model (Sup-
plementary Figure S2).

The added benefit of the reduced decision tree classi-
fiers compared with the naive decision tree classifiers
varied over the pandemic weeks and depended on the
selected penalty value (w in equation 1) to model the tra-
deoff between the true-positive and false-positive rates

(Figure 5A). For smaller values of w, which represent
scenarios in which the false positive is minimally pena-
lized, the added benefit of using the reduced decision tree
classifiers is unimportant. Reduced classifiers provide
greater benefit when false positives are penalized more
substantially and when the proportion of HSAs in which
hospital capacity exceeds 15 per 100,000 is large (Figure
5A). However, the naive decision tree classifiers provide
additional net benefit over the reduced decision tree clas-
sifiers when the proportion of HSAs exceeding the hospi-
tal occupancy threshold was low.

We observed similar behavior when the net benefit
function NBpy(), which accounts for true- and false-
positive rates and true- and false-negative rates, is used
(Figure 5B). When this net benefit function is used, the
reduced decision tree classifiers outperformed the naive
decision tree classifiers for a larger number of weeks and
penalty values.
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Figure 5 The net benefit of the reduced decision tree classifiers related to the naive classifiers. (A) Using the net benefit function
NBp(), which accounts for false-positive and true-positive rates and (B) using the net benefit function NBp (), which accounts
for true- and false-positive rates and true- and false-negative rates. In areas shaded green, the reduced decision tree classifiers
outperform the naive classifier, while areas shaded pink indicate where the naive classifier performs better. The gray dashed line
is the proportion of health services areas that exceed the 15 per 100,000 hospital capacity for a given week.
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Figure 6 Frequency at which a feature was identified as
important in 117 reduced decision tree classifiers created
between July 15, 2020, and November 7, 2022. ICU, intensive
care unit.

The change in the number of COVID-19 hospital
admissions in the previous week, the number of beds
occupied by COVID-19 patients, and the number of
COVID-19 hospital admissions were selected as

important features in more than 50% of 117 reduced
decision tree classifiers between July 15, 2020, and
November 7, 2022 (Figure 6). Whether the current hospi-
tal capacity exceeded the 15 per 100,000 threshold was
not included as an important feature in any classifier,
despite the good performance of the naive decision tree
classifier, which used only this feature. However, this
binary feature is highly correlated with other features such
as the number of hospital beds by week and the percentage
of beds occupied by COVID-19 patients (Table 1), which
do appear as important features (Figure 6).

The SHAP values also indicate that COVID-19
admissions and ICU beds occupied by COVID-19
patients have a large influence on model predictions
(Figure 7). The SHAP values broadly follow a trend in
which high numbers of admissions and occupied hospital
beds (indicated by the pink dots in Figure 7) increase the
log odds of a positive prediction, whereas lower admis-
sions decrease the log odds.

One major advantage of and the main motivation for
using decision tree classifiers is that they are interpreta-
ble. To demonstrate, we present 3 decision tree classifiers
developed for 3 different stages of the pandemic (Figure
8): the week of July 14, 2021, when the delta variant was
circulating in the population but was not yet the domi-
nant strain (panel A); the week of August 4, 2021, when
the delta variant was dominant (panel B); and the final
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Figure 7 Shapley Additive exPlanations (SHAP) summary plot for the reduced decision tree classifiers. Each point represents the
SHAP value for a feature and an instance (observations from a single health services area over a single week). The color of each
point represents the value of the feature from low to high. Overlapping points are jittered vertically to display the distribution of

SHAP values per feature. ICU, intensive care unit.

week in our study time period, that is, the week of
November 20, 2022 (panel C). To illustrate how these
decision tree classifiers could be used in practice by a
local policy maker, we consider the scenario observed in
an HSA in Maryland for July 14, 2021 (Table 3). Since
hospital beds occupied by COVID-19 patients = 22.82,
which is less than 28.835, the condition of the first deci-
sion node is satisfied. Hence, we check the condition of
the second node, whether the number of hospital beds
occupied by COVID-19 patients is < 10.38, which is sat-
isfied. Therefore, this classification decision tree predicts
that the hospital capacity of 15 per 100,000 population is
not expected to be exceeded in 3 wks’ time.

We note that while the classification trees in Figure 8
are developed for different phases of the pandemic, they
all identified the same features as important: 1) the num-
ber of hospital beds occupied by COVID-19 patients, 2)
the number of ICU beds occupied by COVID-19
patients, and 3) the number of hospital admissions of
COVID-19 patients. What is different between these
classification trees is the classification thresholds and the
depth of the tree; for example, the classification thresh-
old at the first node of these trees is 28.835 (A), 26.346
(B), and 26.636 (C).

Our sensitivity analyses suggested that the decision
tree classifiers considered here maintained their perfor-
mance under various scenarios, representing when 1) the
outcome of interest is whether the hospital capacity

exceeds 15 per 100,000 over a 3-wk period, instead of at
exactly 3 weeks from now (Supplementary Figure S3); 2)
the hospital capacity is 10, 15, or 20 per 100,000 popula-
tion (Supplementary Figure S4); 3) predictions are made
over 2-, 3-, 4-, or 6-wk periods (Supplementary Figure
S5); 4) the training dataset is limited to the past 4, 10,
and 26 wk (Supplementary Figure S6); and 5) models are
trained every 4 wk instead of every week (Supplementary
Figure S7).

Discussion

We presented an adaptive framework for generating sim-
ple classification rules that predict whether COVID-19
hospitalizations would exceed local capacity. These clas-
sification rules are easy to communicate and use the lat-
est data from surveillance systems that are available at
the local level. To develop these classification rules from
July 2020 to November 2022, we trained decision tree
models on “expanding” datasets, in which all available
data up to the target week of interest were used in the
training procedure. This allowed for the model-training
procedure to account for changes in pandemic trajec-
tories due to factors not included as features in the model
(e.g., vaccination rates, waning immunity, and easing
nonpharmacologic interventions). These interpretable
decision rules demonstrated similar performance com-
pared with logistic regression and neural network models
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Figure 8 Decision tree classifiers developed at 3 different points during the pandemic. The week of July 14, 2021, when the delta
variant was circulating in the population but was not yet the dominant strain (A); the week of August 4, 2021, when the delta
variant was dominant (B); and the final week in our study time period, that is, the week of November 20, 2022 (C). The
percentages represent the proportion of instances in the final leaves where hospital capacity was exceeded. ICU, intensive care

unit.

based on various performance metrics such as auROC,
auPRC, sensitivity, specificity, and accuracy (Figures 2
and 3).

Our classifiers were trained on a range of COVID-19
indicators that were routinely reported between July
2020 and November 2022, including hospital admissions
and hospital occupancy. However, the source of case

and death data used in this study for the “full” classifiers
ceased being updated in mid-2023,'> and other data
sources are updated at only the state level®® if at all.***°
Although this limits the training data on which the clas-
sifiers can be trained, we have shown that omitting death
and case data does not significantly affect the perfor-
mance of the characterized classification rules (Figure 2).
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Table 3 Data for Allegany/Garrett Health Services Area in
Maryland on July 14, 2021*

Value

Hospital admissions 1.35
ICU beds 0.52
Hospital beds 22.82
Percent beds occupied by COVID-19 patients 1.5
Change in admissions —1.81
Change in ICU beds 0.34
Change in hospital beds 5.65
Change in percentage beds occupied by 0.38

COVID-19 patients

Currently exceed threshold capacity Yes
Exceed capacity 3 wk later Yes

ICU, intensive care unit.

#This HSA contains Allegany and Garrett counties in
Maryland and Grant, Hardy, and Mineral Counties in West
Virginia.

Indeed, the reduced classifiers presented reasonable per-
formance, with an auROC >0.80 for most of the pan-
demic weeks.

Although all classifiers (decision tree, logistic regres-
sion, and neural network) had a stable auROC through-
out the pandemic weeks, their auPRC, sensitivity,
specificity, and accuracy varied more substantially with
pandemic waves (Figure 3). Furthermore, the classifiers
we studied demonstrated substantially different accuracy
in predicting the continuation of a surge or a nonsurge
state or predicting a change in the current state (Table
2). This suggests that different classifiers should be routi-
nely evaluated as the pandemic unfolds, and during dif-
ferent phases of the pandemic, different classification
methods might be selected to inform predictions.

We focused on providing predictions at the level of
HSAs as this would have enabled local policy makers to
detect potential surges in COVID-19 hospitalizations
and to respond accordingly before the local hospital
capacity is overwhelmed. One such previous attempt was
the CDC’s Community Levels framework. This frame-
work, however, lacked a direct relationship with a spe-
cific outcome of interest'® and was never updated after
its development. Other studies have provided more sys-
tematic classification rules predicting specific outcomes
(such as hospital capacity’® or high mortality'?). We
extended this work by demonstrating that decision tree
classifiers trained on surveillance data could predict
whether COVID-19 hospitalizations may exceed the
local capacity level with reasonable accuracy. These clas-
sification rules provided by these models are easy to use
and interpret in practice (Figure 8).

The spread of SARS-CoV-2 varied substantially
across different communities and geographic regions,
depending on the implementation of nonpharmaceutical
interventions,®! local rates of vaccination,’’ and the
emergence of novel strains, among other factors.*®?°
Despite the substantial heterogeneity in data reported by
HSAs, our analysis suggests that our reduced decision
tree classifiers maintained their auROC across US coun-
ties (Figure 4). We note that the spatial performance of
classifiers was not dramatically improved when case and
death data were used to develop classification rules (Sup-
plementary Figure S2).

Two of the decision tree classifiers considered here
(i.e., “CDC optimized” and “full”) use case and death
data. The available case data undercounted the actual
number of infections, as only cases confirmed by a mole-
cular laboratory test were included."” Limited testing
availability,”® particularly at the beginning of the pan-
demic, and asymptomatic transmission contributed to
this undercount.’” Similarly, death counts relied on the
patient to be diagnosed according to guidelines specified
by state and federal bodies,*® which could have led to
both the mis- and underdiagnosis of patients. However,
our analysis shows that even without these COVID-19
indicators (as in our reduced classifier), reasonable pre-
dictive power can still be achieved (Figure 2). In the
reduced decision tree classifiers, the admissions and
change in admissions and occupied ICU beds were most
frequently considered to be important in the decision
tree classifiers (Figure 6). Similarly, these features had
some of the largest explanatory effects on the auROC
(Figure 7).

By using the net benefit framework, our approach
allows for incorporating policy makers’ preferences
between different prediction outcomes (i.c., false negative
and positive and true negative and positive). For exam-
ple, predicting that there will be a surge in hospital occu-
pancy when there will not actually be one (false positive)
or predicting no surge when one is going to occur (false
negative) have distinct health and economic costs; the
former could have high economic costs, and the latter
could lead to high adverse health outcomes. Our analysis
shows that the classification rules identified by our
approach present positive net benefit values, especially
during the pandemic phases when the COVID-19 hospi-
talizations were rising or declining (Figure 5).

An important limitation of predictive models that are
trained on only historical data is that historical data may
not adequately capture the possible changes in pandemic
trajectories due to future events. This is particularly true
if novel strains emerge with characteristics that are sub-
stantially different from what is manifested in historical
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data. The use of simulated trajectories, which can be
parameterized to allow for such variations, may help to
make the predictions of the classifier more robust.”
Although classification decision trees are easy to visua-
lize and interpret, their structure could change through-
out the pandemic when retrained frequently. Decision
trees that change significantly over time may be more
challenging to implement, as the reasons for the specific
changes in the tree (e.g., changes in cutoff points, node
ordering, tree depth) can be opaque to policy makers.

The proposed approach is flexible, allowing for sev-
eral extensions. While we trained our models to predict a
binary outcome, classification decision trees could also
be developed to predict multiple outcomes, such as
“low,” “medium,” and ‘high” levels of COVID-19 hospi-
tal capacity, if thresholds to define these outcomes are
available. Furthermore, we included only indicators
related to the COVID-19 pandemic to predict surges in
hospital occupancy. However, there is evidence of
cocirculation of influenza, COVID-19, and respiratory
syncytial virus infections during recent winters,**
which threatens to overwhelm the health care system.
Data from surveillance systems related to these infectious
diseases could be incorporated to provide more robust
predictions. Finally, while we focused on predicting
surges in hospitalizations, other metrics of interest, such
as ICU capacity or mortality, could also be considered
depending on the availability and the quality of data
related to these outcomes.
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S1 Hyperparameter tuning and cross-validation

ss0 10 avoid over-fitting and to ensure that the classifiers are robust to temporal and spatial
se0 variation in our dataset, we used a ten-fold spatial cross-validation approach (where the
dataset is divided by HSAs into ten folds). For each week ¢, we applied this method to tune
hyperparameters of each classifier. The ranges for the hyperparameters are shown in Table

561

562

563

S1.

Table S1: Hyperparameters of classifiers considered in our analysis

Classifier Parameter Values/Range
Decision Tree Criterion gini, entropy
Max depth of tree 2-5
Logistic Regression Regularization L1, L2
Regularization strength 0.001, 0.01, 0.1, 1, 10, 100
Solver liblinear, saga
Neural Network Neurons 64, 128, 255
Learning rate 0.0001, 0.001, 0.01

« 52 CDC Community Levels

New Cases . :
(per 100,000 population in Indicators Medium
the last 7 days)
New COVID-19 admissions per 100,000
population (7-day total) =R s -
Fewer than 200
Percent of staffed inpatient beds occupied by o
COVID-19 patients (7-day average) S
New CQVID—19 admissions per 100,000 NA <10.0
population (7-day total)
200 or more
Percent of staffed inpatient beds occupied by
< i 0,
COVID-19 patients (7-day average) NA e

The COVID-19 community level is determined by the higher of the inpatient beds and new admissions indicators,

based on the current level of new cases per 100,000 population in the past 7 days

Figure S1: Criteria for establishing CDC Community Levels [1].
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S3 Sensitivity Analyses

S3.1 Change in prediction task

In the main text, we focused on predicting whether capacity will exceed a given threshold
in week t + 3. Here we present the evaluation metrics when the prediction task is to predict
hospital capacity over a three-week period subsequent to ¢ ([t + 1,¢ + 3]). The auROCs
for the Full, CDC Optimized, and Reduced classifiers trained to predict this outcome were
comparable with the prediction of capacity in week ¢ + 3 (comparing Figure S3 with Figure
2 in the main text).

S3.2 Change in hospitalization threshold

In addition to the hospital capacity threshold of 15 per 100,000 people that was used to
generate our binary outcome in the main text, we also explored two other thresholds: 10 or
20 per 100,000 people. The models were trained in accordance with the procedure outlined in
the main text, though now the feature and outcome relating to hospitalization capacity are
replaced with a binary variable calculated based on the new threshold of interest. Overall,
the performance did vary substantially between capacity thresholds and the auROC scores
remained high (Figure S4).

S3.3 Change in duration of outcome period

In the main analysis, we predicted whether the hospital capacity would exceed 15 per 100,000
in three weeks’ time. We additionally investigated three other periods: two (t+2), four (¢44),
or six (t+6) weeks. Shorter outcome periods benefited the performance of the model (Figure
S5), particularly when there was a decrease in the proportion of HSAs that exceeded capacity
(around week 90).

S3.4 Limiting the size of the training dataset

The models in the main text have an "expanding” training set, which includes all available
data up to the test week, . We tested more limited training sets, namely restricting the
training data to a four-week ([t — 5, t — 1]), ten-week period ([t — 11, ¢t — 1]) and a twenty-
six-week period ([t —27, t —1]). Expanding the training dataset did not significantly change
the performance of the models considered here (Figure S6).

S3.5 Training models every four weeks

In this sensitivity analysis, we investigate the frequency at which the decision tree classifiers
should be retrained with new, more recent data to ensure their continued accuracy. Rather
than delivering predictions every week, we trained models to deliver predictions every four
weeks using all data available up to ¢, and used it for prediction tasks over the next four
weeks. The overall performance was comparable to scenarios where the prediction models
were trained weekly (Figure S7).
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« 54 SI Figures
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Figure S2: Performance of the Full classifiers across all HSAs where COVID-19
death and case data are also used. See caption of Figure 4 for additional information.
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Figure S3: Performance of decision tree classifiers when the outcome of interest
is whether the hospital capacity exceeds 15 per 100,000 over a three-week pe-
riod. See the caption of Figure 2 for additional information. The first row represents the
performance of models developed under the base scenario as presented in Figure 2.
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Figure S4: Performance of decision tree classifiers when the outcome of interest
is whether the hospital capacity exceeds either 10 or 20 per 100,000 during the
outcome period. See the caption of Figure 2 for additional information. The first row
represents the performance of models developed under the base scenario as presented in
Figure 2.

29



A) aurRoC B) auPRC

1.0 10 4
@
&
0.8 4 r0.8 =2
g 2
§ o 0.6 0.6 §
=) (=]
?3 @ 0.4 4 Naive Lo.4 8
> CDC Optimized =
Q Reduced X
0.2 - Rl F0.2 E
—— cDbCcL a
0.0 . . : T . T . 0.0 ~

C) D)
1.0 10 ,
4
0.8 0.8 g
§ o0 0.6 0.6 §
@ (% Naive g
5 0.4 1 Fo.4 3
=4 CDC Optimized 5
o Reduced B
0.2 1 Full Fo.2 E
— cCDCCL =
0.0 T T T T T T T 0.0 ~

E) F)
1.0 10 ,
a
0.8 1 r0.8 g
§ o 061 0.6 g
N (% Maiwve lg'
5 0.4 4 N Fo.4 3
= CDC Optimized =)
o Reduced %
0.2 7 Full r0-2 &
—— cDCCL 2
0.0 T : r T T T r 0.0~

G) H)
1.0 E
0.8 g

(]
2 o 0.6 §
[=] (=]
© & Naive Log B
[ - .4 3
> CDC Optimized =
o Reduced %
Ful r02 &
—— cDbCcL a
T : ‘ . T ‘ . : . 0.0 ~
0 25 50 75 100 125 0 25 50 75 100 125
Weeks after 2020-07-15 Weeks after 2020-07-15

Figure S5: Performance of full decision tree classifiers when the outcome of inter-
est is whether the hospital capacity exceeds 15 per 100,000 people in over a 2, 3,
4, or 6 week period. See the caption of Figure 2 for additional information. The second
row represents the performance of models developed under the base scenario as presented in
Figure 2.

30



% 1.0 1.0 g
s o84 ¥ o8 2
2 i 2
(=}
% o 0.6 | 0.6 Ei
= g v [ i 2
S foa e 0 =
@ 04— cocoptimizes;, r04 3
o ~— Reduced i ! g
o ] B
g 0.2 4+ Ful | i H F0.2 g
‘g — cpccke ] ‘E
= 0.0 2
P 1.0 g
g
E 0.8 ;
1)
3 © r0.6 g-
g g g
2 § =
= 0.4 3
a B
E B
] F0.2 o
. 0.0 &
P 1.0 g
§ F0.8 2
'C_ﬁ =
@ -
3 g I 06 @
E ‘% —— i Naive ‘g_
= 0.4 7 —/ cDC Optimized | r04 g
=] — Fheduqed ! i
i 0.2 = Rl | ! F0.2 g
T —— cpccl, ] NS ‘E
= 0.0 T =F T — — — 0.0
G)
2 L ES
ﬁ p 0.8 g
" !
g e P i 0.6 g
E l% —u'Naivé; | ‘l‘ i ! lg_
= ——/ CDC Optimized| | r0.4 g
S — PReduced I [ B
E e Rl | ; ! F0.2 o
@ —— cpccls / s E
= T =F T — - T T T T T — 0.0 2
0 25 50 75 100 125 0 25 50 75 10 125

Weeks after 2020-07-15 Weeks after 2020-07-15

Figure S6: Performance of full decision tree classifiers when the training set is
either the previous 4, 10, or 26 weeks. See the caption of Figure 2 for additional
information. The first row represents the performance of models developed under the base
scenario as presented in Figure 2.
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Figure S7: Performance of decision tree classifiers when the model training set is
only updated every four weeks. See the caption of Figure 2 for additional information.
The first row represents the performance of models developed under the base scenario as
presented in Figure 2.
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