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Abstract (248 words)

During the COVID-19 pandemic, estimating the total deaths averted by vaccination has been of
great public health interest. Instead of estimating total deaths averted by vaccination among both
vaccinated and unvaccinated individuals, some studies empirically estimated only “directly
averted” deaths among vaccinated individuals, typically suggesting that vaccines prevented more
deaths overall than directly due to the indirect effect. Here, we define the causal estimand to
quantify outcomes “directly averted” by vaccination—i.e., the impact of vaccination for
vaccinated individuals, holding vaccination coverage fixed—for vaccination at multiple time
points, and show that this estimand is a lower bound on the total outcomes averted when the
indirect effect is non-negative. We develop an unbiased estimator for the causal estimand in a one-
stage randomized controlled trial (RCT) and explore the bias of a popular “hazard difference”
estimator frequently used in empirical studies. We show that even in an RCT, the hazard difference
estimator is biased if vaccination has a non-null effect, as it fails to incorporate the greater
depletion of susceptibles among the unvaccinated individuals. In simulations, the overestimation
is small for averted deaths when infection-fatality rate is low, as for many important pathogens.
However, the overestimation can be large for averted infections given a high basic reproduction
number. Additionally, we define and compare estimand and estimators for avertible outcomes (i.e.,
outcomes that could have been averted by vaccination, but were not due to failure to vaccinate).
Future studies can explore the identifiability of the causal estimand in observational settings.
Keywords: vaccine-averted outcomes, cumulative incidence difference, direct impact, overall

impact



1 Introduction

During the COVID-19 pandemic, determining the total number of infections (or deaths) averted
by vaccination has been of great public health interest.'~!? Researchers are interested in how many
infections (or deaths) have been averted overall by COVID-19 vaccine rollout programs, compared
to the counterfactual of no vaccination for anyone. However, in the presence of indirect effects,
the key challenge is that we may not observe a comparable population that is unvaccinated
throughout. Rather than estimating the total number of outcomes averted among both vaccinated
and unvaccinated individuals, some empirical studies*® have instead estimated outcomes “directly
averted” among vaccinated individuals by conditioning on the actual vaccination coverage in the
rest of the population. The estimand and estimation procedures used in selected examples of
studies are summarized in eAppendix 1. Typically, studies that estimated outcomes directly
averted among vaccinated individuals computed daily or weekly hazards of death among all
vaccinated and not-yet-vaccinated individuals, calculated the difference in hazards, multiplied this
difference with the number of vaccinated survivors, and summed the results across time. We refer
to this method as the “hazard difference estimator.” Empirical analyses of this type commonly
assumed that such directly averted outcomes are a lower bound on the total averted outcomes due

to the indirect effect in reducing transmission.*

This study is motivated by two research gaps from the numerous empirical analyses*3:11:12

that estimated directly averted (or avertible) outcomes among vaccinated (or unvaccinated)
individuals under a vaccine rollout. First, the causal estimand for directly averted outcomes has
not been precisely defined as a mathematical quantity for vaccination at multiple time points under
interference. Second, the popular hazard difference estimator used by these analyses has not been

evaluated. Therefore, we first propose the casual estimand and its unbiased estimator based on a



one-stage randomized controlled trial (RCT). We use the causal estimand to formalize the lower
bound assumption and identify the condition under which a vaccine rollout program has averted
more outcomes overall than directly among the vaccinated individuals. Last, we evaluate the bias
of the hazard difference estimator relative to the causal estimand. This paper is an important
extension to our previous study'? which develops estimands for quantifying averted outcomes for

vaccination at a single time point, as vaccination almost always occurs over time in reality.

Section 2 of this paper describes the setup and notation. Section 3 defines the causal estimand
for quantifying directly averted outcomes among vaccinated individuals, as well as its unbiased
estimator and the hazard difference estimator. Section 4 examines the bias of the hazard difference
estimator both analytically and through simulations.

2 Setup and notation

Hudgens and Halloran'# defined four effect estimands (namely the direct, indirect, total, and
overall effects) for vaccination at a single time point in a two-stage randomized trial, which reduces
to a one-stage RCT when the study population consists of a single group. In reality, two-stage
RCTs are rarely conducted or justified; for our purpose of estimating directly averted outcomes,
we define our estimand and estimators based on a one-stage RCT, with notation closely aligned to
that of Hudgens and Halloran.'

Consider a one-stage RCT that consists of N individuals indexed by j = 1, ..., N with a large
N.'" Consider q + 2 evenly spaced measurement intervals for ¢ € N. Let [ € {0, ..., q + 1} denote
each interval with baseline measurements taken in interval 0, and g + 1 representing the end of
follow-up.'” Let X; denote the assigned vaccination time, where x; € {0, ..., q + 1} are possible

realizations of X;.'® Vaccination occurs at the beginning of each interval, whereas x; = q + 1

denotes unvaccinated throughout. Let X = (X, ..., Xy) denote the vaccination times individuals



were assigned. Let X denote a possible realization of X. Let X' (N) denote the set of all possible
(g + 1)V vaccination time allocations for the group, for which x € X' (N). Throughout we assume
perfect compliance (i.e., assignment to a particular vaccination time is equivalent to receipt of
vaccination at that time if the person is still alive), no loss-to-follow-up, and no measurement error.
In an ideal one-stage RCT, these assumptions are expected to hold.

Here, interference is assumed—that is, the potential outcome for any individual depend on
vaccination assignments of every other individual in the group.'* Let Y., ;(x) € {0,1} be a
cumulative indicator of experiencing the outcome (e.g., death) before the beginning of interval q +
1 for individual j had the group followed the vaccination schedule x € X'(N). By convention,
Yy, = 0.7

Letp = {q + 1,d; py, ..., pq} denote parameterizations that govern the distribution of X, where

q + 1 is the number of potential vaccination times, d is the number of days of each interval, p, is
the proportion of individuals assigned to x € {0, ..., q + 1} such that Zz:é px = 1. We assume p
is a mixed individual assignment strategy,'*'® as defined in eAppendix 2. In words, p randomly

assigns po X 100% of the individuals to receive vaccination at baseline, p; X 100% to receive

vaccination at the beginning of interval 1, and so on, with p, 44 X 100% to remain unvaccinated

throughout.'® Let ¢ = {q + 1, d; 0} denote no vaccination. To quantify vaccine-averted outcomes,
our goal is to assess the impact of some vaccination strategy p compared to ¢.

At baseline, individuals are randomly assigned to X conditional on a mixed individual
assignment strategy (i.e., fixed proportions of individuals [e.g., 20%, 30%, 50%] were assigned to
receive vaccination at specific times [e.g., Day 0, Day 60, Day 120], respectively; see definition
in eAppendix 2). Note that random assignments X occurs only at baseline, even though individuals

receive vaccination at different times. This study design is referred to as a “one-stage” RCT



because randomization takes place only once, in contrast to the “two-stage” RCT described by
Hudgens and Halloran,'* in which groups are first randomized to different strategies and then
individuals within each group are randomized to vaccination conditional on their group’s assigned
strategy. Let Yqﬂ(x; p) denote the group average potential outcome as defined in eAppendix 2,
which is equivalent to population average potential outcome'* because there is only one group. Let
AY 1 (x;p) = Y1 (x; p) — Yi(x; p) for L € {0, ..., q} be the difference in ¥ between intervals [
and [ + 1.1
3 Causal estimand and estimators for quantifying outcomes directly averted by vaccination
3.1 Causal estimand
In our prior work with vaccination at a single time point,'* we defined the “direct impact” estimand
to quantify outcomes directly averted among vaccinated individuals as the number of vaccinated
individuals multiplied by the direct effect (DE)!# for vaccination at the baseline time point. In
notation, the number of outcomes directly averted by p = {1,d; p,} (i.e, vaccination of p, at the
beginning of a single interval, with interval duration d), compared to no vaccination ¢ = {1, d; 0},
is:

67 (. p) = Npo (Y1 (1; p) — ¥1(0; p))

= NpoDE;((1,0);p). (1)

When vaccination occurs at multiple time points, there could be multiple versions of direct
effects. A direct effect can be a contrast between non-vaccination and some vaccination time x' €
{0, ..., g}, conditional on p (e.g., comparing individuals unvaccinated versus vaccinated at interval
0, or unvaccinated versus vaccinated at interval 1). In notation, the direct effect comparing

probability of having developed the outcome by the beginning of interval g + 1 for an individual



unvaccinated throughout versus assigned to x' when the group follows strategy p = {q +
1,d; pg, ..., pg} is:
DEq1((q +1,x");p) = Yqui(@ + 1;p) — Yt (X5 ). (2)

Now, extending the estimand in equation (1) for vaccination at two time points (i.e., x’ = 0 or
x" = 1, as compared to unvaccinated x = 2), we consider the direct effect of x’ € {0,1} compared
to unvaccinated throughout, weighted by the number of individuals assigned with x’, and summed
across x' € {0,1}. In notation, the number of outcomes directly averted by p = {2, d; py, p1},
compared to no vaccination ¢ = {2, d; 0}, is:
Definition 1 (Causal estimand for directly averted outcomes for vaccination at two time points)

55 (d.p) =N -{py - [V2(2;p) = V,(0;p)] + p; - [V2(2;p) = V(L ]} (3)
= N -{po - DE,((2,0); p) + p, - DE,((2,1); p)}.

eAppendix 3 extends 52 (¢, p) to an arbitrary number of vaccination times. eAppendix 4
shows that 55“((]), p) is the lower bound on outcomes averted among both vaccinated and
unvaccinated individuals when the indirect effect is non-negative. However, the indirect effect can
be negative when transmission or fatality parameters vary over time, as we showed earlier for
vaccination at a single time point.'* Therefore, in the more general case of vaccination at multiple
time points, the indirect effect is not guaranteed to be non-negative under many realistic scenarios.

3.2 Unbiased estimator

ﬁy=1 Yo j(X)I[Xj=x
T 11Xj=A]

Define ¥, (x; p) = 2 J for x € {0,1,2}. That is, ¥, (x; p) is the cumulative incidence

by the beginning of interval 2 for individuals assigned to x under strategy p. Then the estimator

for 62 (¢, p) in equation (3) is:

5 (D)= N-{py- [%2p) = %0 0] +p1 - [H(2p) - %1 ]} (@)



eAppendix 5 proves that 6q+1D(¢, p) is an unbiased estimator for 5., (¢, p) forq ENina

one-stage RCT under mixed assignment strategy p. Note that p, for x € {0,1, ...,q + 1} is known
and fixed under a mixed assignment strategy p in an RCT, although it must be estimated in an
observational setting.

3.3 Hazard difference estimator

As summarized in the literature review (eAppendix 1), recent empirical studies*® often used what
we refer to as the hazard difference estimator, which relies on the number at risk and the number
of new cases among individuals vaccinated (and not-yet-vaccinated) by a given time to quantify
outcomes directly averted among vaccinated individuals.

Let AV, (x;p) = ¥, 11(x;p) — Y, (x; p) for [ € {0, ...,q}. Equation (5) defines the hazard
difference estimator for two vaccination times (see eAppendix 6 for extension to an arbitrary
number of vaccination times).

Definition 2 (Hazard difference estimator for directly averted outcomes for vaccination at two time

points)
—~D=x — ~ ~ — ~ ~
5 (0,0) = N3 (p) (A (p) — hZ () + N2 (p) (R¥(p) — %(p))  (5)

where h?(p) = AY,(0; p) is the incidence among vaccinated individuals by the beginning of

p1AY1(1;0)+p2 AV (2;p)
p1tp2

interval 1, A%(p) = is the incidence among not-yet-vaccinated individuals by

the beginning of interval 1 (Note this quantity is the combination of two distinct groups—

individuals assigned to x = 1 and x = 2), NY(p) = Np, is the number survived by the beginning

of interval 0 among individuals assigned to x = 0, NY(p) = N [po (1 — Y,(0; p)) + py (1 —

Y, (1; p))] is the combined number survived by the beginning of interval 1 among individuals



PoAY2(0;0)+p1AY,(1;p)
po(1-71(0;p)) +p1(1-71(1;p))

assigned to x = 0 and x = 1, h5(p) = is the hazard among vaccinated

AY2(2;p)

= 1s the hazard among not-yet-
1-7,(2:0) g noty

individuals by the beginning of interval 2, h%(p) =

vaccinated individuals by the beginning of interval 2.
To give intuition for the unbiased estimator and the hazard difference estimator, consider the

following example (Figure 1). Suppose we observe an ideal trial randomizing 6 individuals into
three arms according to the strategy p* = {2,60; g,g}. One-third of the individuals are randomly

assigned to vaccination at baseline (x = 0), one-third to vaccination at the beginning of interval 1

(x = 1), and the remaining to no vaccination throughout (x = 2). As illustrated in Figure 1A, the
unbiased estimator gives SZD (b, p) = 6-{py - [2(2;97) = 12(0;07)] + o1 - [T2(2;97) —
Y,(1; p*)]} =6- E 1-0)+ § (1 — %)] =3 . As illustrated in Figure 1B, the hazard
difference estimator gives ?s}D*(q), p") = NY(p") (ﬁ}‘(p*) — ﬁf(p*)) + N7 (p*) (ﬁ%(p*) —

() =2-(5-0)+3-(1-0) =4
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FIGURE 1 | Schematic representation of an ideal randomized controlled trial with 6 individuals
(horizontal lines) under the strategy p* = {2,60;;,&}. One-third of individuals are randomly

assigned to vaccination at baseline (x = 0), one third to vaccination at the beginning of interval 1
(x = 1), and the remaining to no vaccination throughout (x = 2). The dashed vertical lines
represent the beginning of each interval. (A) The unbiased estimator considers the cumulative
incidence in each arm. Note ¥;(x; p*) is the cumulative incidence by the beginning of interval [
among individuals assigned to vaccination time x under strategy p*. (B) Hazard difference
estimator considers the hazards and survival among vaccinated and not-yet-vaccinated individuals.
Note hY,,(+) (or A% ,(-)) is the hazard for vaccinated (or not-yet-vaccinated) individuals from
interval [ to [ + 1.

4 Bias of the hazard difference estimator for the causal estimand
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. . . . . D+ .
Now, we use analytical and simulation approaches to examine the bias of §, (¢, p) relative to
the causal estimand.
4.1 Analytic comparison

First, re-write the causal estimand 82 (¢, p) as follows (See derivation in eAppendix 3):

57 (¢, p)

—N oo p14Y; (1; p) + p,AY; (2; p)
° p1t P2

— AY, (0; p))
+ [(,00 +p1) - AV (2;p) — (POAYZ (0;p) + p1AY,(1; p))]} (6)

Then, expand E [SZD*((I), p)] as follows (See derivation in equation [S13] eAppendix 6):

E[5, (4.0)] = E[NE () (Rt(p) — R2(p)) + N (p) (R¥(p) — R3(p))]

p14Y; (1; p) + p,AY; (2; p)
N1po-

— AY,(0; p)
p1t P2 ! p)

Po (1 - %.(0; P)) + p1 (1 -1 P))

+E|(po +p1) - .
(o + 1) (1- 1z )

-AY,(2; p)

— (PoAY,(0; p) + p1 AV, (1;0)) ¢ (7)

I Po(1-71(0;p))+p1(1-¥1(1;p))
(pot+p1)(1-71(2;p))

= 1, then equation (7) equals (6) (See proof in eAppendix 6). That

is, 6, (&, p) is an unbiased estimator under the null (i.e., when the survival is the same between

those assigned to no vaccination and those assigned with x =0 or 1 ). However, if

11



po(1-71(0;p))+p1(1-¥1(1;p))
(po+p1)(1-71(2;p))

# 1, then SED* (¢, p) is biased relative to the causal estimand, implying

that it is biased if vaccination has a non-null effect.
eAppendix 7 provides an alternative unbiased estimator for quantifying directly averted

outcomes with a similar (but not identical) expression and have same data requirement as

(/S;D*(q), p). The alternative unbiased estimator allows estimation of directly averted deaths using
data aggregated by vaccination status.

4.2 Simulation comparison

4.2.1 Scenarios

We simulate an epidemic with strategy p’ = {2, 60; 0.2,0.3} under different infection-fatality rate

(IFR), vaccine efficacy against infection (VEinf), or vaccine efficacy against death given infection

(VEgeath). We examine the bias of the hazard difference estimator SED* (¢, p") relative to the causal
estimand 62 (¢, p"), where ¢ = {2, 60; 0}, and identify the conditions under which the bias would
be substantial (Table 1).

TABLE 1 | Scenarios for simulations, varied by infection-fatality rate, vaccine efficacy against
infection (VEinf) and vaccine efficacy against death given infection (VEeath)

Scenario Infection-fatality rate Vaccine efficacy
Scenario 1 1% VEint = 90%; VEgeath = 0%
Scenario 2 10% VEint = 90%; VEgeath = 0%
Scenario 3 100% VEint = 90%; VEgeath = 0%
Scenario 4 1% VEint = 0%; VEgeath = 90%
Scenario 5 10% VEint = 0%; VEgeath = 90%
Scenario 6 100% VEint = 0%; VEgeath = 90%
Scenario 7 1% VEinr = 90%; VEdcath = 90%
Scenario 8 10% VEinr = 90%; VEdcath = 90%
Scenario 9 100% VEinr = 90%; VEdcath = 90%

In the main text, we explore scenarios with varying IFR, VEiut, and VEgeam, including several
extreme scenarios for illustrative purposes. For sensitivity analyses, we explore scenarios with

varying number of effective contacts (f), as well as more realistic parameter values for 5, IFR,

12



VEint, and VEdeam, specifically corresponding to seasonal flu, measles, and COVID-19 (wild-type
strain).

4.2.2 Model

Consider a hypothetical RCT with strategy p’ = {2, 60; 0.2,0.3}, in which interval 0 spans Days
0-59, interval 1 spans Days 60-119, and interval 2 is the post-follow-up period on or after Day 120,
such that 20% of individuals can be assigned to vaccination at Day 0, 30% to vaccination at Day
60, or the rest remain unvaccinated throughout. In the susceptible-infected-recovered-death (SIRD)
model, individuals are stratified by time of vaccination. Within each stratum, we specify a
continuous-time SIRD model. The subscript 0 represents those assigned to receive vaccination in
the beginning of Day 0, 1 for those assigned to receive vaccination in the beginning of Day 60,
and 2 for the never vaccinated. For those receiving vaccination in the beginning of Day 60, vaccine
efficacies against infection (6, ) and death given infection (k) are time-varying variables that come
in effect on and after Day 60 (Table S4). The SIRD model is defined in term of continuous time ¢

as follows:

13
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=K p-y-Io(t) )

PRGENGEHG

NG (the hazard rate of infection), f = the number

where y = recovery rate, A(t) =

of effective contacts made by a typical infectious individual per unit time, u = probability of death
due to infection, N(t) = sum of all individuals alive at t. eAppendix 8 shows the parameters and
initial values used in simulations. For simulation, the model was discretized to day time-steps.
Code is available at https://github.com/katjia/vax_rollout impact.

4.2.3. Simulations
Figure 2 compares the expected value of hazard difference estimator (i.e., E [?SZD*((I), p')]) with

the causal estimand (i.e., 62 (¢, p")) under Scenarios outlined in Table 1; eAppendix 9 shows the
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bias of the hazard difference estimator relative to the causal estimand on the absolute and relative
scales.

No infections were averted when VEinr= 0% (Figure 2A; Scenarios 4 to 6). In Scenarios where
VEinr = 90%, the hazard difference estimator substantially overestimates the averted infections
(Figure 2A; Scenarios 1 to 3, 7 to 9). This is because given the high reproduction number (R, =
3.57) and a high VEir susceptibles were preferentially depleted among the unvaccinated
individuals quickly, such that by interval 1, individuals with x = 2 had lower survival from

infection than the average survival among individuals with x = 0 and x = 1 (Figure S3)—that is,

po(1-71(0:p"))+p5 (1-71(1:0"))
(po+p1)(1-11(2;p")

> 1 in equation (7). eAppendix 11 varies the Scenarios by the number

of effective contacts () and show that the overestimation is more pronounced the higher £ is.
The hazard difference estimator substantially overestimates the averted deaths when
IFR=100%, while the overestimation is trivial when IFR<10% (Figure 2B). This is due to the

similar survival from death between vaccinated and unvaccinated individuals when IFR is low—

po(1-71(0:p") )+p5 (1-71(1:9)) ~1
(po+p(1-71(2:0)) '

that is,

eAppendix 6 repeats the same analyses for vaccination at additional time points and over a
longer period, which shows that averted infections are even more severely overestimated compared
with vaccination at two time points. Consistent with the main-text finding, the hazard difference
estimator sightly overestimates averted deaths when IFR<10%. In eAppendix 12, we consider

more realistic parameter values for seasonal flu, measles, and COVID-19 (wild-type strain). As

with the main analyses, ?S;D* (¢, p) substantially overestimates averted infections for measles due
to high basic reproduction number (R, = 18) and high VEix:. It also slightly overestimates averted

infections for seasonal flu and COVID-19 (wild-type), given a low R, (i.e., <2.2) and VEi,r > 0.

15



The overestimation of averted deaths is trivial due to the low IFR (< 3% for all pathogens) (Figure

S5).

16
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6 Discussion

Recent empirical studies have estimated COVID-19 outcomes directly averted by vaccine rollout
programs among vaccinated individuals. Here, we define a causal estimand for quantifying directly
averted outcomes for vaccination at multiple time points and develop an unbiased estimator. We
also examine a popular estimator used by recent empirical studies—the hazard difference estimator
(as we call it)—and showed that it is biased relative to the causal estimand when vaccination has
a non-null effect, as it fails to incorporate the preferential depletion of susceptibles among the
unvaccinated individuals. The simulations performed here, albeit limited, suggest that the bias is
substantial for averted infections, as susceptibles were preferentially depleted among the
unvaccinated group quickly (due to high effective contacts and high vaccine efficacy against
infection). On the other hand, the bias for averted deaths is small when IFR is <10% (since survival
is similar between vaccinated and unvaccinated individuals), as is the case for many important
infections.

Empirical studies frequently used the hazard difference estimator. As a measure, the hazard
among (un)vaccinated individuals is restricted to those who have not experienced the outcome
between baseline and the start of interval k for k > 1. Consequently, the interval-specific hazard
is subject to differential depletion of susceptibles among the unvaccinated group over time
(assuming vaccines have protective effects).?’ However, the hazard difference estimator multiplies
the number of vaccinated survivors by the hazard difference between vaccinated and unvaccinated
individuals—implicitly assuming that the unvaccinated individuals have the same counterfactual
survival as the vaccinated individuals, thereby failing to account for such differential depletion of
susceptibles among the unvaccinated group. As our simulations show, the hazard difference

estimator overestimates the number of infections averted when susceptibles are preferentially and
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quickly depleted among unvaccinated individuals given a high reproduction number (R, = 3.57)
and a high VEi.. The bias is less pronounced for averted deaths when IFR is low, as survival
between vaccinated and unvaccinated individuals is similar. Therefore, for COVID-19 studies
using the hazard difference estimator, the averted infection estimate is likely more biased than the
averted death estimate.

Researchers can use data by aggregated by vaccination status to estimate averted outcomes by
following the procedures outlined in eAppendices 7 and 13. Most publicly available data from
vaccine registries are aggregated by vaccination status due to privacy or other considerations. In
these situations, we recommend clearly specifying the intervals to which survival and hazard
pertain. An example dataset is shown in Table S11, which organizes the hazard and the number
of survivors within the same row, specifying the hazard to be one interval ahead of the number of
survivors. This arrangement facilitates applying formulas for the alternative unbiased estimator or
hazard difference estimator. The table also includes an explanatory footnote clarifying the intervals
corresponding to the hazard and the number of survivors.

In the main text, we focus on vaccine-averted outcomes. Some other empirical studies
estimated vaccine-avertible deaths—deaths that could have been averted by vaccination, but were
not because of a failure to vaccinate. They used the hazard difference estimator for outcomes
directly avertible by vaccination by multiplying the hazard difference with the number of
unvaccinated survivors and summing across weeks.'!'!? eAppendix 14 defines the estimand, the
unbiased estimator, and the hazard difference estimator for outcomes directly avertible, and shows
simulation results under the same Scenarios as outlined in Table 1. Compared to the causal
estimand, the hazard difference estimator could recover a similar value for avertible deaths when

IFR is modest (<10%) or when vaccines are highly effective at preventing death given infection
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(VEdeatn = 90%) (Figures S6 & S7). Note that when estimating directly avertible outcomes (or
when comparing to any other counterfactual vaccination strategy than no vaccination), researchers
need data disaggregated by vaccination time to use the unbiased estimator.

One major limitation is that the causal estimand and estimators proposed here are developed
in the context of an ideal RCT assuming no confounding, no selection bias, perfect compliance,
and no other sources of biases. In eAppendix 13, we discussed identifying the causal estimand for
averted outcomes using observational data aggregated by vaccination status in the absence of
confounding. In most observational settings, however, there may be strong confounding by vaccine
uptake (i.e., individuals who choose to be vaccinated are also more likely to avoid infection, or
elderly individuals are more likely to be vaccinated and also more likely to die from infection). In
addition, individuals may reduce protective behaviors after vaccination (i.e., risk compensation),?*
and those who have been infected are also less likely to receive vaccination.?? Confounding is also
a concern in existing studies that estimate averted deaths from observational data, as they adjust
for it by stratifying on only simplistic covariates (Table S1). Although observational studies
violate the assumptions of an ideal RCT, addressing all these violations is beyond the scope of this
paper. Future research could use observational data to emulate a target trial similar to the one
described here for estimating vaccine-averted outcomes.

In conclusion, motivated by recent empirical studies estimating outcomes directly averted by
vaccine rollout programs, we define a causal estimand for directly averted outcomes under
interference, which is a lower bound on the total outcomes averted in the entire population when
indirect effect is non-negative. We also develop an unbiased estimator in the context of a one-stage
RCT and examine the bias of a popular estimator (the hazard difference estimator). The hazard

difference estimator is biased relative to the causal estimand when vaccination has a non-null effect
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because it does not incorporate differential depletion of susceptibles among unvaccinated
individuals. Our simulations, albeit limited, show that the hazard difference estimator could
substantially overestimate the averted infections when the basic reproduction number and vaccine
efficacy against infection are high, while the overestimation is small for averted deaths under

modest [FR, which is the case for many important infections.
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eAppendix 1. Literature review of studies estimating the number of COVID-19 outcomes
directly averted among vaccinated individuals or the total number of outcomes averted

among both vaccinated and unvaccinated individuals

Recent studies estimated COVID-19 outcomes averted by vaccine rollout programs either by
targeting the outcomes directly averted among vaccinated individuals'= or by targeting the total
outcomes averted among both vaccinated and unvaccinated individuals.®'° To better understand

the estimation methodologies, we reviewed selected literature listed in Table S1.
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eAppendix 2. Defining individual, group, and population average potential outcomes
1 Mixed individual assignment strategy

Letp ={q + 1,d; po, ..., pq} » Where ZZ:(I) px =1, be a parameterization that governs the

distribution of vaccination times X. Let K, = N - p, = };I(X; = x) for x € {0, ...,q + 1} and
j €{1, ..., N}. Define p to be a mixed individual assignment strategy if K, is fixed under p, with

0 <K, <N for all x € {0, ...,q + 1} and each of the 1'[q+('1<') possible individual assignments

x=0\x*

receiving equal probability.!!:1?
2 Type A parameterization with categorical treatment variable
Hudgens and Halloran'! considered a mixed assignment strategy'? for binary treatment variable
(i.e., vaccination or non-vaccination) in defining the individual average potential outcome; their
approach was referred to as Type A parameterization by VanderWeele and Tchetgen Tchetgen.!?
Here, we define the individual average potential outcomes using Type A parameterization for
categorical treatment variable.

Assume p is a mixed assignment strategy. Let m(X = X; p) denote the probability that the
group is assigned with X given parameter p. The vaccination times X are randomly assigned

conditional on {Kj, ..., K444} with probability mass function:

I I(EL 1(X =x) = K,)
N!
| K A))

TX=x;p) = L

|
where q+'l is the number of ways to assign exactly Ky, ..., K441 individuals to x = 0, ...,q +

Hx:o (Kx ')
1, respectively.

3 Individual and group average potential outcomes



By the beginning of interval q + 1, the individual average potential outcome'' for individual j
with time of vaccination x in the group under strategy p is:

Y, (x;p) = Z Yyi1(x-j = o, % = x) Pry(X_; = o|X; = x)
WEX(N-1)

n(X_j=0,Xj=x;p)

p . See Definition 2 in VanderWeele and
Zm’ex(N—n"(X—j:“’ Xj=x;p)

where Prp(X_j = w|X; = x) =

Tchetgen Tchetgen for the analog with a binary treatment variable.!® As they noted,'® if ¥, ; is
defined under Type A parameterization, the proportion of other individuals assigned to, for
example, x = 0, varies depending on whether individual j is assigned to x = 0. In other words,
the proportion p, for others is not held fixed in ¥, ;(0; p) compared to ¥, ;(k; p) for some

k > 0, so that the so-called direct effect (which can be written as DE,1 ((k, 0); p) = Y41 (k; p) —

Z?’=1(?q+1,j(k:P)—7q+1,j(0;P))
N

Y+1(0;p) = ) does not merit the label “direct effect.” However, this

issue is negligible under a large group size N.

The group average potential outcome is:

2?’=1 Yq+1.j(xj =X P)
N .

17q+1(X; p) =



eAppendix 3. Causal estimand for outcomes directly averted by vaccination

1 Extending the causal estimand to an arbitrary number of vaccination times

For q € N, the causal estimand for outcomes directly averted by p = {q + 1,d; po, ..., pq} where
ZT(I, px = 1, compared to no vaccination ¢ = {q + 1,d; 0} is:

Definition S1 (Causal estimand for directly averted outcomes)

8@ 0) =N p- [Ty @+ 1,0) ~ FpaGsp)] - (5D

q
=N- Z pr - DEg+1((q + 1,k); p)

k=0
52+1(d, p) in equation (S1) can be re-written as:

8g+1(,p)

q

q+1 q+1
=N pr ZAE(qﬂ:p)—ZAm;p)]
k=0 =1 =1
q+1 q+1 q+1 q+1
Po- (Z AY (g +1;p) — ZAYZ(O; p)> +p1- ( AV (g +1;p) — ZAVI(L p)> +p2
=1 =1 =1 =1
q+1 q+1 q+1 q+1
(ZAYL q+1p) - ZAYl(z p)>+ +pn (ZAYI q+1p)- ZAn(h p)>+ +pq
q+1 q+1
(Z ATi(q +1;p) - ZAYl(q p))]

q+1 q+1 q+1 q+1
po~(ZAZ(qH:p)—ZAﬂ(Om))m ( AT(q +1:p) = ) AT(L; P)>+P2
=1 =1 1=

=N-

=N-.
=2

q+1 q+1 q+1 q+1
- (Z AV (g +1;p) — ZAﬁ(Z: p)> ot ppog (Z AV (g +1;p) — ZAVI(h -1 p)> ++ pg
1=3 1=3 I=h I=h

A (S ANCER T RYNANCE p))]



PoAY(0; p) + p1 AV, (15 p)
Po tp1

=N-|po - (AVi(q + 1;p) — AV (0; ) + (po + p1) - (AVZ(q +1;p) - >+ (Po + p1 + p2)

: (A}73(q +1Lp)—

_ _ _ h-1
PolAY3(0; p) + p1AY3(1; p) + p2AY3(2; P)) 2
+ cee + pk
Potp1tp

o . S
.(Ayh(q F1p)— M) - <Z pk> . (quﬂ(q +1;p) - Dheo PbTans G p))]

Zk 0Pk = k=0 Pk

q+1 -1
( pk>-(m(q+1:p> M)] (s2)
— Tizo P

k=0

We assume individuals with x =1 < q + 1 have had the same historical probability of
developing the outcome as those with x = q + 1, up until (. Therefore, from the third to the forth
line, AY; (q + 1; p) cancels out AY; (1; p), since x = 1 is unvaccinated before the beginning of
interval 1; similarly, ¥?_, AY,(q + 1; p) cancels out Y.~ AY;(2; p), since x = 2 is unvaccinated
before the beginning of interval 2, and so on for other vaccination groups. In words, equation (S2)
is the proportion ever-vaccinated (i.e., Y 4-y pj) multiplied with the difference between the period
incidence AY;(-) among individuals assigned to no vaccination and the average period incidence
among individuals ever-vaccinated, summed across time intervals [ € (1, ...,q + 1).

Furthermore, as we assume individuals with x = < g + 1 have had the same historical
probability of developing outcome as those with x = g + 1, up until [, we have AY;(q + 1;p) =

ZZ:} P AY (K;p)

S , such that equation (S2) can be written as:

-1
ZZ*%pkAYl(k p) Tic opkAn(k-p>>
. S3
<Zpk> ( Zq: Zk 0Pk (53)

k

q+1

S p) =N )

=1 k=0
q+l [1-1 q+l -1
Z | PiAY (k3 p)
=N DD o |2 e =3 pbh)| ()
1=1 \ k=0 k 1 P 1=1 k=0
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ZZ:II piAY (k;p)
+1
ZZ:Z pk

Writing AY,(q + 1;p) = also has the advantage of preserving data because they

ZZLI prAY ((K;p)
5a¥1

are equivalent in an ideal trial while
k=t Pl

can be estimated with a larger sample.

2 An example: vaccination at two time points
To be explicit, consider vaccination at two time points. Recall equation (3) that defines outcomes
directly averted by p = {2, d; po, p1}, compared to no vaccination ¢ = {2, d; 0}:

57 (9. p)
=N-[po- (X2(2;p) = 12(0;9)) + py - (V2(2;p) — V2 (1; p))
=N {po - [(A%1(2; p) + AT, (2; p)) — (AV1(0; p) + AV, (0; p))] + p1 - [(AV1(2; p) + AV2(2;p)) — (AV1 (1 p) + AV, (1 9))]}

=N -{po - [(AV1(2; p) + AV, (2; p)) — (AY1(0; p) + AV, (0; p))] + ps - (AV2(2; p) — AV, (1 p))}

_ _ _ AY,(0; AY,(1;
=N'{P0'(AY1(2iP)_AY1(0FP))+(PO+P1)[AY2(2;P)—<p oBT2(050) * pi 8% ‘”)]}

potp1

p14Y1(1;p) + p,AY1(2; p) -
p1tp2

Assume AY;(2; p) =

_ p1AY1(1; p) + p,AY1(2; p)
=N-{po-

- AY,(0; p)) +[(po + p1) - AV, (2 p) — (PoAY2(0; p) + p1 AV, (1; p))]}
P11 P2

i o). (zi:lpm(k; p)  TihpedTik; p)>
' Zk=1P Yiezo Pr

=1 | \ k=0
2 [1-1 _ 2 1-1
PP INACT)) =
=1 \ k=0 k=1 Pk 1=1 k=0

11



eAppendix 4 Conditions under which directly averted outcomes is a lower bound on overall
averted outcomes
To identify conditions under which the number of directly averted outcomes among vaccinated
individuals is a lower bound on the total number of outcomes averted, we first define the “overall
impact” estimand to quantify outcomes averted in both vaccinated and unvaccinated individuals.
Previously, we defined the overall impact estimand for vaccination at a single time point,'# for
which we now extend to multiple time points. First, we need to define the indirect, total, and overall
effects for vaccination at multiple time points.
1 Indirect, total, and overall effects for vaccination at multiple time points
When vaccination occurs at multiple time points, there could be separate versions of indirect and
total effects under each possible value x € {0, ...,q + 1}.
1.1 Indirect effect
In general, indirect effect can be a contrast between two strategies p and p, conditional on x. In
notation, the indirect effect comparing probability of having developed the outcome by beginning
of interval q + 1 for an individual assigned to vaccination time x when the group follows strategy
p versus p is:

IEq+1(xF (p, 5)) = Yq+1(x5 p) — 1?q+1(xi p). (S5
1.2 Total effect
Total effect can be any contrast between any combinations of (x, p) and (x’, p). In notation, the
total effect comparing probability of having developed the outcome by beginning of g + 1 for an
individual assigned to vaccination time x when the group follows strategy p versus an individual

with x” when the group follows strategy p is:

TEg41 (06, x5 (0, 9)) = Ygua (5 p) — Vi (x;B). (S6)
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By definition, total effect is the sum of direct and indirect effects:
TE 1((6,x); (p,9) = Vpur (x5 9) — Vit (X' B)
= Y106 p) = Vo1 (X5 p) + Vit (' p) — Ypua (x5 )
= DEq+1((x, x');p) + IEq+1(x,; (p, 5)) (S7)

Hudgens and Halloran'! also partitioned the total effect into the sum of direct and indirect
effects for vaccination at a single time point.
1.3 Overall effect
The overall effect comparing probability of having developed the outcome by beginning of ¢ + 1
for a typical individual in the group following strategy p versus p is:

OEqs1(p. ) = Vysr () = Vysa ). (58)

2 Partitioning overall effect when comparing no vaccination to some vaccination
Consider the comparison between no vaccination and a vaccination strategy p, as our goal is to
quantify the overall impact of the strategy. Previously, Sobel'? and Hudgens and Halloran'' noted
that when comparing no vaccination to vaccination at baseline, overall effect is the weighted sum
of total and indirect effects. Here, we extend the partitioning of overall effect to vaccination at
multiple time points (Theorem S1).
Theorem S1 (Overall effect partitioning for no vaccination vs. p) Let ¢ = {q + 1,d; 0} for ¢ € N

and d € Z*. Then

q
OEq41(d,p) = [Z P TEq1((q + L, K); (b, p)) | + pga1 - 1Eq1(a + 1 (d, ).
k=0

Proof. For q € N, we have

0Eq+1(¢: p) = Yq+1(¢) - Yq+1(p)

All is unvaccinated under ¢ —

13



= _q+1(q +1L¢) - Yq+1(p)
q+1

By definition, Z pr=1—
=0
[Z Pk * CI+1(q +1; ¢) + Pg+1- _q+1(q +1; ¢)]

q
- [Z P Yar1(k; p) + pgir - Vgrr (@ + 1 P)]
k=0

pre- (T (@ + 1:0) = Vgur (k) + P - (Faus (0 + 1,9) = Vs (g + 1;p))

Il
it
Q <
o

=D P TEgu (@ + 1K (@ 0)) + pgs - 1Eqsa (4 + 1 (4,))

Consider g + 1 = 2. We have OE, (¢, p) = poTE;((2,0); (¢, p)) + p1TE,((2,1); (¢, p)) +

p21E;(2; (¢, p)). The partitioning is graphically illustrated in Figure S1.

Overall effect

OE(¢,p)
Group with p = {2,d; py, p1} Group with ¢ = {2,d; 0}
Indirect effect on those
 — — — | assignedtox =2 -
- p2 - 1E(2; (¢, p) T -
Pl Y@ 16 ) Y2

N B e Total effect on those
|~ assignedtox =1 —

T -TE((2,1); (), H -
P14 Y(1;p) h ( @.0) Y(2; )

Total effect on those
assignedtox =0  _|

. T po-1E(@0 @) ‘ ——

Y(O p) \ U Y2 )

vaccination time x

A

Proportion assigned to

Po

_

14



FIGURE S1 | Graphical illustration on partitioning overall effect. The two rectangles represent
a pair of counterfactuals wherein the group follow strategy p = {2,d; py, p1} or ¢ = {2,d; 0}.
Individuals fall into three categories based on their assigned vaccination time: 1) The dotted region
represents those who are assigned to x = 2 and for whom /E (2; ¢, p) is the difference between
the counterfactuals; 2) the gridded region represents those who are assigned to x = 1 and for
whom TE((2,1); (¢, p)) is the difference between the counterfactuals; and 3) the stripped region
represents those who are assigned to x = 0 and for whom TE((2,0); (¢, p)) is the difference
between the counterfactuals. Theorem S1 shows that OE (¢, p) is a weighted average of three
effects: 1) IE(2; (b, p)), 2) TE((2,1); (¢, p)), and 3) TE((2,0); (¢, p)), each weighted by the
proportion of individuals for whom the effect is in operation respectively: 1) p, for those assigned
to x = 2, 2) p; for those assigned to x = 1, and 3) p, for those assigned to x = 0. The time
interval notation suppressed to reduce clutter.
3 Defining and partitioning overall impact for vaccination at multiple time points
3.1 Overall impact
Now, we use the above definition of overall effect to define the overall impact estimand and apply
Theorem S1 to partition overall impact into components of direct and indirect effects.

The total number of outcomes averted among both vaccinated and unvaccinated individuals by
strategy p = {q + 1,d; py, ..., g}, compared to no vaccination ¢ = {q + 1,d; 0}, is:
Definition S2 (Overall impact estimand for quantifying the total number of outcomes averted)

53+1(¢: p)=N- 0Eq+1(¢' p).

(Sgﬂ (¢, p) addresses the causal question: how many outcomes have been averted among both

vaccinated and unvaccinated individuals under strategy p compared to no vaccination ¢? The

mathematical modeling studies>'? listed in Table S1 have targeted 65+1(¢, p) to estimate total

15



outcomes averted by simulating the epidemic trajectory under no vaccination (¢) and comparing
it with the trajectory under a particular strategy p (or with the observed outcomes).

3.2 Overall impact partitioning

By Theorem S1 and the definition from equation (S7) TEq+1((q + 1,k); (P, p)) = IEq+1(q +
1 (¢, p)) + DEq+1((q +1,k); p) for k € {0, ..., q}, we decompose 52:1(d,p):

83+1(d,p) = N - 0Eq41(d, p)

>

k=0

=N

P - TEqu1((q + L,K); (d,0)) + pge1 - 1Eqs1(q + 1; (b, p))]

; 1
N =

P (DEqer((q + 1L,K); ) + IEqun (0 + 1 (9.9))) + pgss - IEqua(q + 1 (&, p))]
Lk=0

r, 4
=N (Z pr - DEqg1((q + 1,k); p)) +1E;41(q + 1; (0, p))] (59)
L \k=0

Substituting the definition 674, (d, p) = N - Xi_ oy - DEq+1((q + 1,k); p) into the last line
of equation (S9), we have:
6(?+1(¢' p) = 6c?+1(¢1 p) + N : IEq+1(q + 1; ((I)' p))

Therefore, 52,1 (b, p) = 62,1 (, p) ifand only if IE; 44 (q + 1; (¢, p)) = 0.
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eAppendix 5. Unbiased estimator for the causal estimand in a one-stage randomized
controlled trial

Recall equation (S1): 6241(dp,p) =N X} opx - [Ygr1(a+ 1;p) — Vi1 (k; p)] . To identify
82+1(d, p), consider the following assumptions.

Assumption 1. p is a mixed assignment strategy.
Recall the definition of mixed assignment strategy in eAppendix 2: p is a mixed individual
assignment strategy if K, is fixed under p, with 0 < K, < N forall x € {0, ..., g + 1} and each of

11,12

th ] possible individual assignments receiving equal probability.

€ m
Assumption 2 (consistency).?®
IfX=x,then Yy, ;(X) = Ygyq
for all j.
To identify 8,1, (¢, p), we can make use of the following theorem.

Theorem S2 (Unbiased estimator for the causal estimand in a one-stage RCT). Let p = {q +

1,d; py, ..., pq}, where Zzz(l) pry=1,and ¢ ={q+1,d;0} forq € Nand d € Z*. Let

q
Sort @.0) = N- Y pe-[Fpa(@+1:p) = Fpua ()] (510)
k=0

9’:1 Y q+1,jXI[X j=x]
T 11Xj=x]

where ¥, (x; p) = x for x € {0, ..., q + 1}. That s, ¥, (x; p) is the average of

observed outcomes for individuals assigned with x under strategy p. Under Assumpstions 1 and

2,

E |51 (.0)] = 6201 (4.0).

Proof: First, we expand LHS:

17



E 8 (.0)] = Zpk [Y441(q + 1;0) — Yyua (ks )]

Linearity of expectation —

q
= N [oi (EfpaCa + 1p)] = E[fpaGsp])] - (510)
k=0

We largely repeat the proof in A.1 of Hudgens and Halloran'! to evaluate E [?qﬂ(x; p)] for

x € {0, ...,q + 1}. Without loss of generality, let x = 0.

0, XI[X; = O]l

E[ +1(0 P)] = [Z I[X — 0]

Under Assumption 1, K, = N - p, is fixed by design, and under Assumption 2 (Consistency),

we have:

N

~ 1
E[V441(0;p)] = K_Z Z Pr,(X = $)Y,1,;()I[x; = 0].
0521 séx(v)

Any s such that x; # 0 does not contribute to the summation, so that we can write:
E[?q+1(0; P)]
= Kiozﬂyﬂ Ywexm-n Pro(X_j = @,X; = 0) Youy j(x_; = =0)
= Kiozﬂyﬂ Ywexw-1 Prp(X-; = @|X; = 0) Pry(X; = 0) Y4y ;(x-; = w,x; = 0).

Under Assumption 1, Pr, (Xj = 0) = po = Ky /N, implying

N
~ 1
E[fpa @] =2 > Pry(X; = 0lX; = 0¥,y (x; = @3 = 0)

j=1 weX(N-1)

Recall ?q+1,j(0; p)= z Prp(x—j = (l)|X] = X) Yq+1.j(x—j =W, Xx; = 0) —
weX(N—-1)
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1 p—
= ﬁZ;y:l Yo41,5 0;p)

N .
Zj:l Yq+1,j(0: p) _

Recall ¥,,1(0;p) = N

= _q+1(0; p).

Recall equation (S11):

q
E[Sei (d,p)] =N Z[pk - (E[Yqe1(q + 1;p)] = E[Vgu1(k; p)])]
k=0

Substituting from above —
q
=N pulTaa (g + 1,0) = Tyra (s )]
k=0

Recall equation (S1) —

= 5(?+1(¢' p)
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eAppendix 6. Extending the hazard difference estimator for vaccination at more than two
time points

1 Hazard difference estimator for quantifying directly averted outcomes

The hazard difference estimator for strategy p = {q + 1,d; 0, ..., q} for ¢ € N can be defined as

follows:

q+1

Syrr (§,p) = Z[Nz'il(p) (Rt (p) — AY (p))]

=1

ALl pkAT (ki)

where  NiZy(p) = N Xico Pr (1 — Yl p)) . hi'p) = 2l pk(1-91_ 1 (kip)) and hf(p) =

Zk_ o PKAY (K;p)
i pr(1-Y -1 (k)

2 Bias of hazard difference estimator relative to the causal estimand
2.1 Analytical comparison

2.1.1 Bias of hazard difference estimator for an arbitrary number of vaccination times

To examine the bias of 5q+1 ((I) p) relative to 6741 (¢, p), we first expand E[6,41 g+1 ((I) p)] as

follows:

E[n (40| =

q+1
| (M) - (o) - ﬁnp))]]

=1

AL kAT (kip) Yo PkAT (K:p)
- g |yt [N 1-9_,(k: )( k=t PAT _ k=0 PkAY (K; )”
[ Zicop "( -1 (ki p) Tty pr(1-Yiea (i) Bizo p(1-F1oa(kip))

-1 -1

AR, (k;
[Zpk(l_?l—l(k;p))} qu" G ZpkAYz(k:p)H}
k=0

klpk 1- ?ll(k P) k=0

q+1

A

=1

Linearity of expectation —

-1

2.

k=0

Tas pebTi(k; p)
2 o (1= %ia G 0))

1= fiea G p))}

=1 =1 k=0

q+1 -1
ZZE [Pk AT, (k; p)]}

By a proof parallel with that of Theorem S2, we have:
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E[n (40)] = {qZIEl

=1

-1 q+1 (-1
it piAYi(k; p)
kZopk S p))} ST l(lk— ?ll_l(k; p) P p)}

k=1 Pk I=1 k=0

Rearranging terms —

Sico o (1= Fimaki p) s

q+1 -1
Yie Z Ak p) | =

=1 k=0 k=1 Pk Liemi Pr =1 k=0
ZZ+11 Pk
Tt Pe(1-V1-1 (kip))
Zl__l p . . . . .
If o= k = 1 (i.e., vaccination has no effect), then we can write equation (S12) as:
i Pk(l Y 1(k:P))
Ziey Pk

q+1

E[n (40| = {

By a proof parallel with that of Theorem S2, we have:

q+1 [1-1
E[67m1 (@, p)] = {Z (Zm) Zic ’quﬁmk P) ZZpkAYz(k p)}

-1 q+1 -1
AY, (k;
<Z > Zic l;,’h;( P) ZZpkAn(k p)}
=1 0 = =1 k=0

=1 \ k=0 =1 k=0

Recall equation[S4] —

= 82,1(d, p).
Sk p(1-71- 1 (kip)
. sl ok .
However, if T (17110 #1, then E [6q+1 (P, p)] # 60,1(dp,p) . That is,
Zq+l Pk

(S/L,:D*((I), p) is a biased estimator if the survival among vaccinated individuals is different from
that among unvaccinated individuals. In an ideal RCT, the differential survival is due to a non-null
effect of vaccination.

2.1.2 An example: vaccination at two time points

From equation (S12), we have:

E[&" @.0)] = E[W (o (R(p) - R (9)) + F7 (0) (R¥(p) — h5(p) )]
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o (1= s (e )

i lzl S Pk Siopdfla )| o

E Pr |- = == S Pl (k; p)
=1 k=0 Yhe1Pr (1 — Yo (k; P)) Die=1 Pi ==

Zi:zﬂk
Po (1 - 1(0; P)) ~ ~

Elp, - Po _P1AY1(1;p) + p2AY1 (25 p)

0

p1 (1—?0(1;p))+p2 (1—?0(2;p)) p1+ P2
p1+p2
po(1-%0:p) +pi (1-0ip)
+E| (oo +po) - Potp P2BY>(2;p)
P2 (1 - %@ P)) P2

P2

= [PoAY1(0; p) + (oAY, (0; p) + p1 AV, (15 )]

since¥, =0 —

N {E [Po Pp1AYi(L;p) + p2AT1(2; p)

_ p1AYi(1;p) + poAY1(2; p)
=Nipo-

po (1= Fi(0:0)) +p1 (1 - 721 0))
(po + p1) (1 -2 p))

+E

+ .
o TP, (po + p1)

A% (2; P)]

— [PoAY1(0; p) + (o AV, (0; p) + p1 AV, (1; P))]}

By a proof parallel with that of Theorem S2, we have:

po (1= Fi(0;0)) +p1 (1 - 721 p))

o (po + p1) (1 -2 p))

+ .
o0, (po + p1)

A% (2; P)]

— [PoAY,(0; p) + (o AV, (0; p) + p1 AV, (1; P))]}

rearranging terms —

_ p1AY1(1;p) + poAY1(2; p)
=Nipo-

po (1= (0:0)) +p1 (1~ 121 p))
(o + p1) (1 -N( p))

— AY;(0; P)) +E [(po +p1) -

p1+p2

— (poAY,(0; p) + p1 AV (1; p))} (13)

A% (2; P)]
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From the preceding section, we conclude that FE [?SZD*(cl), p)] # 62(p,p) if

Po(1-11(0:0))+p1(1-¥1(1;p))

oG hae) T 1 (i.e., vaccination has a non-null effect).

2.2 Simulations

Here we consider strategy p’’ = {99,7;0.01}, where 1% of the individuals are randomized to
vaccination at x € {0,1,...,98}, or to no vaccination throughout (i.e., x = 99). To illustrate the
bias of hazard difference estimator relative to the causal estimand, we simulate the epidemic under
the same nine scenarios as described in Table 1. Compartments are stratified by x € {0,1, ...,99},
such that within each stratum x, we specify a continuous-time SIRD model in term of continuous

time t as follows:

dS,(t)

A A(E) - Sy ()
d

I:lit) = Hx(t) : A(t) : Sx(t) Y- Ix(t)

s (S14)

dR,(t)

T (I —rx(®) - ) -y - L(2)
dD,(t)

gr =@y L) )

Yt o Le(®)

where A(t) = - and N (t) = the sum of all individuals alive at t. For simulation, the

N()
model was discretized to day time-steps from Day 0 (i.e., the beginning of interval 0) to Day 693
(i.e., the beginning of interval 99). All model parameters are the same as Table S4, except that we

use time-varying parameter 6, (t) to parameterize 1-VEins/ 100%:

0.(t) = {1 if t < beginning of interval x
XX 7|0 ift = beginning of interval x

for vaccination interval x and time t, where 6,.(+) can be 10% or 0%, depending on the scenario

as outlined in Table 1. Similarly, we use time-varying parameter k. (t) to parameterize 1-VEdeath

/ 100%:

23



1 ift < beginning of interval x
k ift > beginning of interval x

(0 = |
for vaccination interval x and time t, where k, (-) can be 10% or 0%, depending on the scenario
as outlined in Table 1.

Initial values for the simulation are described in Table S2.

TABLE S2 | Initial values of the simulations under strategy p’’ = {99,7;0.01}.

Variable Initial condition(s) Definition
N(0) 300,000 Number alive at baseline
s.(0) (300,000 — 300) * 0.01 Number of susceptible individuals assigned to

receive vaccination at the beginning of interval x

1,(0) 300+ 0.01 Number of infectious individuals assigned to
receive vaccination at the beginning of interval x

R,(0) 0 Number of recovered individuals assigned to
receive vaccination at the beginning of interval x

D,(0) 0 Number of individuals assigned to receive
vaccination at the beginning of interval x who
died due to infection

Figure S2 compares the expected value of hazard difference estimator and the causal estimand
for directly averted infections and deaths under strategy p” = {99,7; 0. 01} before the beginning
of Day 693, while Table S3 shows the absolute and percentage biases. Consistent with the
derivation above, the hazard difference estimator overestimates averted outcomes when VE > 0,
due to the lower survival of not-yet-vaccinated individuals compared to ever-vaccinated

St Pk (1-P1-a (o))
-1 17
Ek=0Pk
+1 >
Szt Pk (1=F1-1 (ke")

q+1 11
Zk=l pk

individuals (i.e., > 1 in equation [S12]).
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eAppendix 7. An alternative estimator for quantifying directly averted outcomes using
RCT data aggregated by vaccination status

Here, we show that, for averted outcomes, the causal estimand can be identified with an alternative
unbiased estimator using data aggregated by vaccination status through an expression similar (but
not identical) to that of the hazard difference estimator. While this estimator may appear
unnecessary for RCTs, where data are disaggregated by vaccination time and equation (S10) can
be directly applied, it has important implications for empirical analyses that rely on aggregated
data from national vaccine systems, as discussed further in eAppendix 13.

Theorem S3 (Unbiasedness of an alternative estimator for averted outcomes). Let p = {q +
1,d; py, ..., pg}, where ZZ:; pry=1,and ¢ ={q+1,d;0} forq € Nand d € Z*. Let

q+1

q+1 (¢ p) = <Zk 0Pk

S N, ()R (p) - N:’_1<p>ﬁz’(p)>. (S15)
where N, (p) = N X971 py (1 — T (k:0)). 24 (p) = N 3524 o (1= iy (s p) ). Rl (p) =

Yt prAY (Ksp) ~ Yz LAY (K;p)
=L ,and h} (p) = o=k=0—*— .
It o111 (ki) ® ko P(1=Y1-1(;p))

Under Assumptions 1 and 2 from eAppendix 5, E [(SqﬂD'((I), p)] 52:1(d, p).

Proof:

El6 . (4,p)] =

q+1
<Zi§+2 Pl ()R (p) — Nf’_1<p>ﬁ;’(p>>]
Zk 1 Pk

Substituting N, (p), A¥(p), N7, (p), and A? (p) from above —

< & 1-1
- ZicoPe i S o) o
D B = YA

Yizo piAY; (k; p)
Zk 0Pk (1 - ?l—l(k; P))
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q+1 q+1
NZ( 25+2pk ZpkA?z(k p)]—E Zpkm(k p)D
Yk=1 Pk k=1

By a proof parallel with that of Theorem S2, we have:

q+1 q+1
ElSes” (@,p)] NZ(Z’;+2” - Zpkmk p) - Zpkmk p)>

kl

Recall equation [S4] —
= 6741(d,p)

Note that under the null, g’;ﬁ} PkN™ . (p) = N7, (p) and equation (S15) can be written as

k=1 P

q+1 [Nl (P (h”(p) - h"(p))] which reduces to the hazard difference estimator in eAppendix

6. Therefore, the same type of aggregated data required by the hazard difference estimator can be
used by an unbiased estimator to quantify directly averted outcomes. However, when using
aggregated data to identify the causal estimand in observational studies, we recognize that further
procedures are needed to estimate p, for x € {0, ...,q + 1} because there are no random

assignments of X. We will further explore this in eAppendix 13.
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eAppendix 8. Parameters for simulations in the main text

TABLE S4 | List of parameters for simulations

Parameter Value Definition
B 0.25 The number of effective contacts made by a typical
infectious individual per day
u varied Infection-fatality rate
(7] varied 1 — vaccine efficacy against infection (i.e., VE jnr/
100%)
0,(t) 1ift <60 days Same as above

0 if t > 60 days

K varied 1 — vaccine efficacy against death given infection
(i.e., VE geatn /100%)
K1(t) 1ift <60 days Same as above
K if t > 60 days
Y 0.07 Recovery rate per day

TABLE S5 | List of initial conditions in the group under strategy p’ = {2,60; 0.2,0.3}

Variable Initial condition(s) Definition

N(0) 300,000 Number alive at baseline

S,(0) (300,000 - 300) * (1 -0.2-0.3) Number of susceptible individuals randomized to
receive no vaccination

5,(0) (300,000 — 300) 0.3 Number of susceptible individuals randomized to
receive on Day 60

5,(0) (300,000 — 300) * 0.2 Number of susceptible individuals randomized to
receive vaccination at baseline

1,(0) 300*(1-0.2-0.3) Number of infectious individuals randomized to
receive no vaccination

1,(0) 300+0.3 Number of infectious individuals randomized to
receive vaccination on Day 60

1,(0) 300+ 0.2 Number of infectious individuals randomized to
receive vaccination at baseline

R,(0) 0 Number of recovered individuals randomized to
receive no vaccination

R,1(0) 0 Number of recovered individuals randomized to

receive vaccination on Day 60
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R, (0)

Number of recovered individuals randomized to
receive vaccination at baseline

D,(0)

Number of individuals randomized to receive no
vaccination who died due to infection

D,(0)

Number of individuals randomized to receive
vaccination on Day 60 who died due to infection

Dy (0)

Number of individuals randomized to receive
vaccination at baseline who died due to infection

30



3

'sooe[d [BWIOIP OM] 0} PIPUNOI A1 J[qe) AU} UL San[eA [V "(_0] > dn[eA n[osqe)

SAN[BA 0JJZ-UOU [[ewS A[oWAnxd ‘9[qeidrdidjuriun proAe 03 ‘sade[d [ewWI0dp duUIU 0} PIPUNOI SIN[BA FUISN PIIB[NI[BD JIIM SIOUIIIJJIP dFLIUIIIY] ,
(%SL°82) (%8€°1) (%€1°0) (%S6°19) (%2S'1) (%¥1°0) (%91°19) (%t0°27) (%61°0)
60'¥S18T vI1EL vl 7S'1968¢€ 911 60'1 LY 66T STvI1 80°1 ¢ SUIBIP PAYIIAY
(%60°68) (%Er61) (%LELY) (2%67'801)  (%£9'6t)  (%6ELY) ¢ SUONIJuUI
YL LOL6E v 1S18T 1L'LTILT 000 000 000 6v°€060F  SL'6LTST  ¥S6EILT PAYIdAY
%06 %06 %06 %0 %0 %0
= WP A = WP A = WP A %06 %06 %06 = WP A =WRP A =WRPA
%06 %06 %06 = WP A =WEPI A = WP A %06 %06 %06
=JgA =JgA =JIgA %0 =FA %0 =T"HA ‘%0 =MHA =IgA =JgA =gA
%001 “MAL %01 ¥4I %l AL %001 AT %01 MAL %I AL ‘%001 “MAL %01 MAL ‘%1 ~ddAl
ré
@ oT—&:oom w om.:w:oom h om.:w:oom @ oT—&:oom m omhﬁsoom v c_.azvom M om.:w:oom Q_.Ezvom ~ om.:w:oom

"I e, UI paUIINO sk “(W*PH A ) UONIJul
UJAIS [Jedp Jsurese A0BIIJd dUIDJBA PUB (W A ) UOIIDJJUI Jsurese AOBIIJJd dUIIIRA ‘(Y J[) el AI[BIBJ-UONIJJUI AQ PILIBA SOLIRUIDS Jopun d A3djens

Iopun SAWO0INO PILIOAL J0J (9OUIOJAI) PUBLUIISO [BSNED O} O} QANR[A1 J0JBWINS dOUSIYIP plezey dy) Jo seiq d3ejuaoiod pue onjosqy | 9§ A 14V L

SI[BIS AR PUR IJN[OSQE IY) UO PUBLIIISI [ESNEI Y} 0) IANE[II I0JRWIISI IUIIJJIP pAezey 3y) Jo seiq ¢ Xipuaddyd



[43

"09 Ae( So1BOIpUI dUI| PAYSep AI10) INOYSNOIY) PAIBUIOOBAUN SUIUTBWAI ASOY) J0J dN[q PUe ‘()9 AB(J J8 UONBUIOOBA 0} PIUSISSE 9SO} 10
U213 ‘QUIfASk( J8 UOIIBUIOIBA 0) PAUSISSE S[BNPIAIPUL SJUISAIAII quI] pay “(PHPH A ) UONOJUL UIAIS eI ISuIese AOBI1JJd dUIOIBA pue (PWH A ) UONIJJul
1sureSe Aoedo1yjo aurodeA ‘(Y ]) 91l AI[ejej-uonddul Aq paLIeA SOLIRUIS Ul {€°0‘Z°0 092} = ,d A391ens Iopun sorweukp aseasiq | €5 AANOIA

Aeq
sgL 00k SL 05 se 06l  00L S 0$ sz 06 00 S 05 sz 06 00k S 05 se 06l 00 S 05 sz o
B : et 000
8% ; ” 520
(o) = ' .
23e . : 050
rEg | | .
Ly u : ” 5.0
@ | ' 00't
LB \ 4 000
<89 v ‘ 520
= -
m m
REY ! | =
i ' 00't
o B : ' 000
£.8 ! , 520
ol c | | .
Mvm w ' ' 050
wo d ! :
LS S.°0
g : ” )
| ' 00't
o ' : 000
seB 1 oo~ -
3y i
dig " 050
= wy ! 5.0
w=> . 00t
o ! 000
o =3 1 -
559 i 5202
~Jc ' AT
JEF ' 0508
L8 : SL0F
g " <
i 00't
2 ' 000
e o 1 g
"
Tis | 050
w3
Lwsd d S0
s : 00't
: 000
o ]
g8l | 520
°g% . 050
o €° !
gy ! SL0
>
& ! 00't
' 000
] _ :
22l ; 520
mmm " 050
: .
8> " 20
| 00't
' 000
ST | .
g5 ; 520
TR ’ ! .
118 _ , 050
=" 1 [ -
Tl ' ! 5.0
' ,
| ' 00't
suonRodul . . R .
oARBINWNG G uyeeq v palanoosy ‘¢ snonosju| ‘g a|qudeosng |

OLIBUJIS I8 IIpUN SITWRUAP IsedsI(] *(] xipudaddya



eAppendix 11. Scenarios for simulations by varying the number of effective contacts

In Figure 2B, we varied IFR and showed that SZD*((I), p") substantially overestimates averted
deaths when IFR = 100%, due to the stark difference in relative survival between vaccinated and
not-yet-vaccinated individuals. However, when IFR < 10%, the overestimation is trivial due to the
similar survival across groups. Here, instead of varying IFR, we vary the number of effective
contacts (f3) to explore the bias. Scenarios are specified in Table S7. All other parameters match
the main analysis (Table S4), except for infection-fatality rate u, fixed at 0.1. Initial values also
match the main analysis (Table S5).

TABLE S7 | Scenarios varied by number of effective contacts (), vaccine efficacy against
infection (VEinf) and vaccine efficacy against death given infection (VEgeath)

Scenario B Vaccine efficacy
Scenario I 0.15 VE int = 90%; VE geath = 0%
Scenario 11 0.2 VE int = 90%; VE geath = 0%
Scenario III 0.25 VE int = 90%; VE geath = 0%
Scenario IV 0.15 VE int = 0%; VE geath = 90%
Scenario V 0.2 VE int = 0%; VE geath = 90%
Scenario VI 0.25 VE int = 0%; VE geath = 90%
Scenario VII 0.15 VE int = 90%; VE geath = 90%
Scenario VIII 0.2 VE int = 90%; VE geath = 90%
Scenario IX 0.25 VE int = 90%; VE geath = 90%

Figure S4 compares the expected value of hazard difference estimator with the causal estimand
for averted infections and deaths in Scenarios as specified in Table S7, while Table S8 shows the
absolute and percentage bias. As shown in Figure S4 and Table S8, the hazard difference
estimator overestimates averted infections in all Scenarios (except for averted infections when
VEinr = 0%; Scenarios IV to VI), and the bias increases with . This is because susceptibles (from
infections) are preferentially depleted among unvaccinated individuals at a faster rate when f is

higher and VEinr = 90%.
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eAppendix 12. Simulations with more realistic parameter values

In the main text, we considered extreme combinations of IFR, VEiy, and VEgean for illustrative
purposes. Here, we consider more realistic parameter values estimated by previous studies on
seasonal flu, measles, and COVID-19 (wild-type strain), as shown in Table S9. As in the main
text, we simulate strategy p’ = {2,60; 0.2,0.3}, using the same model structure as in equation (8).
Our objective is not to realistically model the dynamics of these epidemics—which would involve
population heterogeneity, more complex infection characteristics (i.e., breakthrough infections, re-
infections), waning immunity, vaccination at more time steps, and parameters that vary by time
and context. Instead, we simply aim to test the robustness of our results across a broader and more
realistic range of parameter values compared to those parameters used in the main text (as
presented in Table S4).

TABLE S9 | More realistic parameter values for seasonal flu, measles, and COVID-19 (wildtype).
Definitions for the parameters are provided in Table S4. Model equation is shown in equation (8).

Parameter Seasonal flu Measles COVID-19
B 04115 1.26 ¢ 0.15"
u 3% 18 1.3% 1° 0.11% 20
0 0.66 2! 0.05 22 0.05 %
K 0.69 0% 0.04 2¢
Y 02115 0.07 % 0.07 28

2 B is obtained from applying the formula f = R, - y, where R, =basic reproduction number.

As Figure S5 and Table S10 shows, the hazard difference estimator substantially
overestimates averted infections for measles due to high basic reproduction number (R,=18) and
high VEix. It also slightly overestimates averted infections for seasonal flu and COVID-19 (wild-
type), given a low R, (i.e., Ry <2.2) and VEixr > 0. The overestimation of averted deaths is trivial
due to the low IFR (< 3% for all pathogens).

For avertible outcomes (defined in eAppendix 14), the hazard difference estimator slightly

underestimates avertible deaths for COVID-19. As shown later, this occurs because the hazard
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difference estimator neglects the term p; - [AY,(1; p) — AY,(0; p)] in the causal estimand
(equation [S20]). This term is positive for COVID-19 (i.e., the period incidence of death for
individuals with x = 1 is higher than that for individuals with x = 0), such that hazard difference
estimator underestimates the causal estimand. For measles, there is no bias for avertible deaths
under the hazard difference estimator because AY, (0; p) = AY,(1; p) = 0 (See equation [S20] and

compare it with equation [S24]).
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eAppendix 13. Using observational data aggregated by vaccination status for estimation
eAppendix 7 defines an alternative unbiased estimator (equation [S15]) using RCT data
aggregated by vaccination status. However, such an RCT is often not feasible in reality, and here
we show how to identify the causal estimand using observational data aggregated by vaccination
status (i.e., similar data structure as the national vaccine system??).

1 Obtaining p, using observational data
In the proposed RCT, we specify the strategy p and the proportions {po, . pq+1} by design. In an

observational study, the investigators make no assignments, rather we only observe the time at

which individuals are vaccinated (denoted as X*). In this case, the proportions p, for x €

. N X =
{0, ..., q + 1}, must be estimated from the data. However, we cannot assume p, = E [%l

for x* € {0, ..., g + 1} due to immortal time bias (i.e., since individuals who die before interval 1
cannot receive vaccination, individuals with x* = 1 are by definition “immortal” before interval
1).39 Here, we discuss the procedures to estimate p,, for x € {0, ..., q + 1}, addressing the immortal
time bias. Note we assume the absence of confounding and additional selection bias at baseline
and throughout follow-up. These assumptions are implausible in observational studies, but
addressing all their violations is beyond the scope of this paper. Instead, this section focuses on
identifying the causal estimand using observational data aggregated by vaccination status,
addressing the immortal time bias that would otherwise exist even in the absence of confounding
or additional selection bias.

Without loss of generality, consider discrete-time outcome Y for death. The SIRD-model in

equation (S14) can be simplified into the following equation for discrete-time outcome Y':

+1

N (p) = NP () - (1= hfyy(p)) + N - praq - 1_[(1 —hi(p))  (S16)
k=0
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where N/(p) = N Xk_o pr (1 — ¥i(k; p)) is the number survived among vaccinated individuals

Zk:o PKAY 141 (k;p) u ZZLlH PrAY 141 (K;p)
= or h = -
Sk=o Pk(1-Y1(k;p)) (or hiz, (p) s Pr(1-71(ip)

by interval [, and h{,,(p) = ) is the hazard from

interval [ to [ + 1 among vaccinated (or unvaccinated) individuals.
Therefore, p;;,1 can be estimated by:

N2 (o) = NP (0) - (1= Rl (p))
N - TIES (1 - Ri(e))

(S17)

Pi+1 =

To illustrate this, Table S11 shows a simulated dataset that is aggregated by vaccination status
in a hypothetical observational study in the absence of confounding or additional selection bias.
The epidemic is simulated under the (unobserved) strategy p’ = {2, d; 0.2,0.3} in Scenario 1 as
described in Table 1.

TABLE S11 | Dataset aggregated by vaccination status in a hypothetical observational study

without confounding under unobserved strategy p’ = {2,60; 0.2,0.3}
Interval Observed number  Hazards of death Observed number Hazards of death

(k) survived among  among vaccinated survived among among not-yet-
vaccinated individuals not-yet-vaccinated vaccinated
individuals (Ez +1())° individuals individuals
(Nx(p")* (Nx(p")* (hi11(p)"

0 60000 0.00060716 240000 0.00426391
1 149579.818 0.0026133 149360.413 0.00491036

aNumber of individuals survived before the start of interval k among those who are (un)vaccinated
at the start of the that interval.

® Hazard for events occurring after the start of interval k and before the start of interval k + 1 (i.e.,
hazard leads survival by one interval).

Assuming that we know the baseline vaccination proportion p, = 0.2, we are interested in

recovering p; and p;. By substituting the data from Table S11 into equation (S17), we have:

ORReH - - (1- ﬁ'f(p’)) 149579.818 — 60000 - (1~ 0.00060716) _  , _ ,
p1= P N 11— =Us=p4
N- (1 —h¥(p )) . (1 — h¥(p )) 300000 -1 - (1 —0.00426391)

Then, we can easily obtain p; = 1 — 0.2 — 0.3 = 0.5.
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3 Identifying causal estimand using observational data

Lastly, we verify that, the causal estimand can be identified using observational data aggregated
by vaccination status (subject to immortal time bias until corrected by equation [S17]) in the
absence of confounding or additional selection bias. By having p’ = p’ and substituting the data

from Table S11 into equation (S15), we have:

Sert (.00 = Z (ZZ+§’;’,‘ R, (0)hE (") - Nz’_l(p'm;’(p'))
=1

k=1

= [p 7, N ()t (p) — N§ (p')h"(p’)] [ plﬁ”(p')h () — NY (PR3 (p)

0.2 0.5
= (ﬁ * 240000 * 0.00426391 — 60000.0 = 0.00060716) + (ﬁ * 149360.413 * 0.00491036 — 149579.818 * 0.0026133)

= 56192146

Consider the simulated data from a hypothetical RCT where we have cumulative incidence
data disaggregated by vaccination time (Table S12). By substituting the RCT data into equation
(S10) (i.e., the unbiased estimator), we estimate the averted deaths to be 300000 *
[0.2 * (0.00915333 — 0.00220958) + 0.3 * (0.00915333 — 0.00753893)] = 561.921, which
is the same as the result obtained from Table S11. Therefore, in the absence of confounding or
additional selection bias, we can use observational data aggregated by vaccination status to
estimate cumulative incidence difference estimand for averted outcomes.

TABLE S12 | Dataset disaggregated by vaccination time in a hypothetical one-stage RCT under
strategy p’ = {2,60; 0.2,0.3}

Vaccination time (x) Py Cumulative incidence for death
?2 (x; p")
0 0.2 0.00220958
1 0.3 0.00753893
2 0.5 0.00915333
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eAppendix 14. Outcomes directly avertible by vaccination
In the main text, we define the causal estimand and estimators for quantifying outcomes directly
averted by vaccination. Here, we propose the causal estimand and estimators for outcomes directly
avertible by vaccination. The proposed causal estimand considers outcomes that could have been
averted under full vaccination at baseline (denoted as ¢ = (¢ + 1,d; 1, 0) for g € N), but were
not averted given the particular vaccination strategy p.
1.1 Causal estimand for outcomes directly avertible by vaccination at a single time point
Our previous framework'# defined the causal estimand for quantifying avertible outcomes for
vaccination at a single time point—that is, outcomes that could have been directly averted under
full vaccination at baseline Y = {1, d; 1} but were not averted given the particular strategy p =
{1,d; py}, where p; = 1 — p,. In notation, the estimand is:

S2(,p) =N -p; - (Fi(1;9) —71(0;p))  (S18)
1.2 Causal estimand for outcomes directly avertible by vaccination at two time points
Now, extending the estimand in equation (S18) for vaccination at two time points, we define the
estimand to quantify outcomes that could have been directly averted under full vaccination at
baseline Y = {2,d; 1,0} but were not averted given the particular strategy p = {2,d; py, p1}. In

notation, the estimand is:
87 (W, p) = N - [p,(V2(1;p) = ,(0; ) + p(%(2; p) — V2(0;0))]  (S19)
= N - [(p1AY,(1; p) + p,AY1(2; ) — (1 + p2) - AV1(0; p) + py - (AV,(1; p) — AV, (0; p))
+p; - (A%(2;p) — AL (0;p))].  (S20)
In words, equation (S19) takes the difference in cumulative incidence between vaccination at

baseline (i.e., Y,(0;p)) and vaccination at later time x € {1,2} (i.e., ¥,(1;p) or Y,(2;p)),
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multiplied with number of individuals assigned to x=1 or 2 (i.e., N - p; or N - p,), respectively,
and sum over x € {1,2}.

1.3 Outcomes directly avertible by vaccination at an arbitrary number of vaccination times
Extending the estimand in equation (S19) for vaccination at an arbitrary number of vaccination
times, we define the estimand to quantify outcomes that could have been directly averted under
full vaccination at baseline § = {q + 1, d; 1, 0} but were not averted given the particular strategy

p =1{q + 1,d;py, ..., pq} for ¢ € N. In notation, the estimand is:

q+1

82 0) =N py (Taus(i0) ~ pua (0:)).  (521)
k=1
2 Unbiased estimator

Similar to the unbiased estimator for directly averted outcomes in equation (S10), directly avertible

outcomes (i.e., 551 (P, p)) can be identified by:

q+1

Sort (.0 = N py- [Fa (s p) = Ton O] (522)
k=1

?’ﬂyqﬂ,j(X)l[Xj:x]
Tie 11Xj=x]

where ¥,,1(x;p) = x for x €{0,...,q + 1}. We know that 6q+1D(l|J, p) is

unbiased based on a proof parallel with the proof of Theorem S2.
3 Hazard difference estimator for outcomes directly avertible by vaccination
Some empirical studies®'*? have used the hazard difference estimator to estimate vaccine-avertible

outcomes, which takes the form:

q+1

Sorn (W,p) = ) [F (o) - (o) - R (o))

=1

q+1

= B¢ - (Rt @) - R @) + ) [Ty o) (At - i @)]  (523)
=2
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24t pA? (k)

— , and RY =
ZZ:;Pk(l—Yl—ﬂk:p)) /(P

where N/, (p) = NX{L) pi (1 — Vi (ks p)) , hit(p) =

Tico PKAT 1 (K;p)
i pr(1-Y -1 (k)

In words, the hazard difference estimator quantifies directly avertible outcomes

by multiplying the hazard difference h¥(p) — h¥(p) by the number survived among not-yet-
vaccinated individuals N, (p).

4 Bias of the hazard difference estimator relative to the causal estimand for vaccination at
two time points

4.1 Analytic comparison

Consider vaccination at two time points. The hazard difference estimator for quantifying outcomes
that could have been directly averted under full vaccination at baseline Y = {2, d; 1,0} but were
not averted given the particular strategy p = {2, d; po, p1} is:

5" (W.p) = N o) (A (0) — B2 (p)) + Mi(p) (R (p) — R3 () )

p1AY1(1; p) + poAY1(2; p)
p1tp2

=N(p, + pz)< — A7, (0; p)) + Np,[1 - 7,(2;p)]

. AY,(2;p) _ PolY;(0; p) + p1 AV, (1; p)
1-h(Zp) p, (1 - 110 P)) + 01 (1 -1 P))

p1AY1(1; p) + p,AY1(2; p)
p1+p2

=N-.

(p1 +p2) ( — AY,(0; p)) +p,

AY,(0; p) + p1AY,(1; p)
a2 0) - [1 - 72 p)] ——L2=2
( 2 o ]po(l—?1(0:p))+p1(1—?1(1;p))

=N- (plAYl(l: p) + p2AY1(2;p) — (py + p2) - AP (0; p)) +p2

: <A?2 (2p) -

(po +p1) - (1 =72 P)) .pOAf’z (0; p) + p1AY,(1; p)
po (1= 17,00:p)) +py (1 - 7,(1;p)) Po+p1 '

Consider E [S;D*(lp, p)].
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E[&" o) =E N

(plA?l(l: p) + p2AY1 (25 p) — (py + p2) - AP (0; p)) +p2

. <Ay2(2; o) — (0o +p1) - (1 =72 p)) PoAY2(0;p) + p1 AT (1; p)>”

po (1-110:9) + 1 (1-Fi(1;p)) Po+ 1

=N- {(plmﬁ(l: p) + p;AY1(2;p)) — (1 + p2) - AY1(0; p) + py - AV,(2; p)

-E

(po +p1) - (1 -2 P)) poAY,(0; p) + p1AY,(1; p)
p2- : n (524)
po (1= £:(0:0)) +p1 (1~ 121 p)) Pot 1

Comparing equation (S20) with equation (S24), we know that E [@D*(lp, p)] # 62 (g, p) if

vaccine has a non-null effect, as equation (S24) misses the term p, - [AY,(1; p) — AY,(0; p)] and

(po+p1)-(1-71(2;p)) . PoAY2(0;p)+p1AY2(1;p)
po(1-71(0;p))+p1(1-71(1;p)) Potp1

Elp; - # py - AV, (0; p).

4.2 Simulation

We simulate the epidemic under strategy p’ = (2,60; 0.2, 0.3) based on the same model (equation

[8]), scenarios (Table 1), parameters (Table S4), and initial conditions (Table S5) as with the

simulations in the main text. We examine the bias of the hazard difference estimator SED* W, p")
relative to the causal estimand 62 (Y, p"), where Y = {2, 60; 1,0}, and identify the conditions
under which the bias would be substantial.

The hazard difference estimator overestimates directly avertible infections when VEir = 90%
(Figure S6A; Table S13). However, the hazard difference estimator overestimates directly
avertible deaths in Scenarios 3 to 6 and underestimates directly avertible deaths in other scenarios

(Figure S6B; Table S13).
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Take Scenario 3 where [FR=100% as an example. The hazard difference estimator

overestimates avertible deaths. Due to high VEif, survival is lower among x = 2 compared to the

(po+p1)-(1-71(2:0"))
po(1-71(0;p"))+p1(1-71(1;p"))

average of x = 1 or x = 0 (Figure S3). Specifically, < 1 in equation

(P(’)+P1)'(1—?1(2i0’)) ) poAT, (0;0)+p1 AV, (1;p")

S24 h that E |p} - > 7
(S24), such that E |p, po(1-71(0:p")+p1 (1-71(1;") Po+P1

in equation (S24) is

smaller than p;, - AY,(0; p") in equation (S20).

However, in Scenario 2 where IFR=10%, the hazard difference estimator underestimates

. : e (po+p1)-(1-F1(2;p’
avertible deaths because the relative survival is similar (i.e., — o+01) ( - ))

= — ~ 1 h
Po(1-71(0;p"))+p1(1-71(1;p")) ), suc

(P(’)+P1)'(1—?1(2i0’)) poAT,(0;p")+p A%, (1;p")
po(1-71(0;p"))+p1(1-71(1;p")) Po+P1

that E [p; in equation (S24) is greater than

p5 - AY,(0; p’) in equation (S20).
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5 Bias of the hazard difference estimator relative to the causal estimand for vaccination at

an arbitrary number of vaccination times

5.1 Analytic comparison

Now consider vaccination at an arbitrary number of vaccination times (i.e., ¢ € N). First, expand

52+1 (P, p) in equation (S21) as:

q+1

82a(W.0) =N - ) pi- (Tyua ki p) = Tasa (030
k=1

q+1 q+1
=N~Z (ZAYz(k o) - ZAn(o p)>
q+1 q+1 q+1
=N py (mk; p)+ ) ATi(k;p) — AT, (0;p) = ) AT,(0; p))
1=2 1=2

k=1

q+1 q+1 q+1 q+1
> b (AT06p) = AT O:p)) + ) i (Z AT (k; ) = ) AT, (0; p))] (525)
k=1 k=1 =2 =2

Then, expand 5q+1D*(l|J, p) in equation (S23) as:

=N-.

q+1

St (W, p)—Z[Nh(m GORHO))

< [ S B (K p) S Y, (K p)
=N (1= st m) |- |3
=1 k=1 Zk ! Pk 1 s P)) Y ok (1 -V 1k P))

q+

q+1
) Tizo piATi(k; p)
Z {Z PkA?l(k ) IZ Pk 1 ?1 1(k; p))] Zk L ok (1 — ?l—l(k" P))}

=1
Pulling [ = 1 from the summation -

q+1 q+1
=N {Z prAYy (k; p) — (Z pk> - A1 (0; p)
k=1

k=1

q+1 (q+1 q+1
Tico AV (k; p)
Y, (k; p) — —Y_.(k;
+;{;pkA (k; p) ;pk (1- s p))] T e (1= Faop)

i
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S e (1= %2 )

q+1 q+1l|q+1 q+1 q+1

Xizo piAti(k; p)
=N pe (8%, (K: ) — A7,(0;: ) + pebf ) = ) p L=t P 4
kZl k( ' ' ) ; ; o (Z k> Yo opk 1 71k P)) Zizo Pr

Zk 0Pk

Now consider E [5q+1D*(l|J, p)].

q+1

R (O B R WA RACHEINACTH)

k=1

Zz+}Pk(1 = 1(k:0))

S5 N Tht PR EYINAGT))
+Z ZPkA?I(k;P) Zpk Zje=1 Pi ko PkAY (ks p
=2 k=t k=l ) Opk 1 71k P)) Skzo Pr

Yiezo Pr

Using arguments parallel with those in the proof of Theorem S2 —

q+1

- (A¥,(k; p) — AV, (0; p))]

S o (1= Ta (k; p))
q+1[q+1 q+1 q+1 Z Z AY(k )
+Z ZPkAYI(kiP) —E k= lpk iezo PKAY (k; p (526)
=2 | %=1 k 1 YhZo Pr (1—?1 1k P)) EiZo Pk
Zk 0 Pk

Equation (S25) and equation (S26) have the same first term. However, if vaccination has a non-
null effect, X371 oy - (X125 AVi(k; p) = T/ AY,(0;9)) = X325 pr - 215 AV (s p) — X2 e -
YAV (0;p) in  equation (S25) does mnot equal to N[N p AV, (k;p)] -

Zz+ll Pk(1—7l_1(kip))

q+1 q+1 TiL; Pk ch_lo PrAYi(k;p) . . . :
E|X2, ( pk) ) pk(l P2 Gon) S o in  equation (S26), implying
Sizo Pk

E (S (0] # 820 (bp).

5.2 Simulation
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We simulate the epidemic under strategy p'' = {99,7; 0. 01} based on the model in equation (S14),
scenarios in Table 1, initial values in Table S2 and parameters in Table S4. Similar to findings
observed under strategy p’, the hazard difference estimator overestimates directly avertible
infections when VEi,/=90% (Figure S7A, Table S14). It substantially overestimates directly
avertible deaths when IFR=100% and VE geath = 0% (Scenario 3), slightly overestimates them in
Scenarios 4, 5, 6 and 9, and underestimates them in Scenarios 1, 2, 7, and 8 (Figure S7B, Table

S14).
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