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Abstract (248 words) 

During the COVID-19 pandemic, estimating the total deaths averted by vaccination has been of 

great public health interest. Instead of estimating total deaths averted by vaccination among both 

vaccinated and unvaccinated individuals, some studies empirically estimated only “directly 

averted” deaths among vaccinated individuals, typically suggesting that vaccines prevented more 

deaths overall than directly due to the indirect effect. Here, we define the causal estimand to 

quantify outcomes “directly averted” by vaccination—i.e., the impact of vaccination for 

vaccinated individuals, holding vaccination coverage fixed—for vaccination at multiple time 

points, and show that this estimand is a lower bound on the total outcomes averted when the 

indirect effect is non-negative. We develop an unbiased estimator for the causal estimand in a one-

stage randomized controlled trial (RCT) and explore the bias of a popular “hazard difference” 

estimator frequently used in empirical studies. We show that even in an RCT, the hazard difference 

estimator is biased if vaccination has a non-null effect, as it fails to incorporate the greater 

depletion of susceptibles among the unvaccinated individuals. In simulations, the overestimation 

is small for averted deaths when infection-fatality rate is low, as for many important pathogens. 

However, the overestimation can be large for averted infections given a high basic reproduction 

number. Additionally, we define and compare estimand and estimators for avertible outcomes (i.e., 

outcomes that could have been averted by vaccination, but were not due to failure to vaccinate). 

Future studies can explore the identifiability of the causal estimand in observational settings. 

Keywords: vaccine-averted outcomes, cumulative incidence difference, direct impact, overall 

impact 
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1 Introduction 

During the COVID-19 pandemic, determining the total number of infections (or deaths) averted 

by vaccination has been of great public health interest.1–10 Researchers are interested in how many 

infections (or deaths) have been averted overall by COVID-19 vaccine rollout programs, compared 

to the counterfactual of no vaccination for anyone. However, in the presence of indirect effects, 

the key challenge is that we may not observe a comparable population that is unvaccinated 

throughout. Rather than estimating the total number of outcomes averted among both vaccinated 

and unvaccinated individuals, some empirical studies4–8 have instead estimated outcomes “directly 

averted” among vaccinated individuals by conditioning on the actual vaccination coverage in the 

rest of the population. The estimand and estimation procedures used in selected examples of 

studies are summarized in eAppendix 1. Typically, studies that estimated outcomes directly 

averted among vaccinated individuals computed daily or weekly hazards of death among all 

vaccinated and not-yet-vaccinated individuals, calculated the difference in hazards, multiplied this 

difference with the number of vaccinated survivors, and summed the results across time. We refer 

to this method as the “hazard difference estimator.” Empirical analyses of this type commonly 

assumed that such directly averted outcomes are a lower bound on the total averted outcomes due 

to the indirect effect in reducing transmission.4–6  

       This study is motivated by two research gaps from the numerous empirical analyses4–8,11,12 

that estimated directly averted (or avertible) outcomes among vaccinated (or unvaccinated) 

individuals under a vaccine rollout. First, the causal estimand for directly averted outcomes has 

not been precisely defined as a mathematical quantity for vaccination at multiple time points under 

interference. Second, the popular hazard difference estimator used by these analyses has not been 

evaluated. Therefore, we first propose the casual estimand and its unbiased estimator based on a 
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one-stage randomized controlled trial (RCT). We use the causal estimand to formalize the lower 

bound assumption and identify the condition under which a vaccine rollout program has averted 

more outcomes overall than directly among the vaccinated individuals. Last, we evaluate the bias 

of the hazard difference estimator relative to the causal estimand. This paper is an important 

extension to our previous study13 which develops estimands for quantifying averted outcomes for 

vaccination at a single time point, as vaccination almost always occurs over time in reality. 

      Section 2 of this paper describes the setup and notation. Section 3 defines the causal estimand 

for quantifying directly averted outcomes among vaccinated individuals, as well as its unbiased 

estimator and the hazard difference estimator. Section 4 examines the bias of the hazard difference 

estimator both analytically and through simulations.   

2 Setup and notation 

Hudgens and Halloran14 defined four effect estimands (namely the direct, indirect, total, and 

overall effects) for vaccination at a single time point in a two-stage randomized trial, which reduces 

to a one-stage RCT when the study population consists of a single group. In reality, two-stage 

RCTs are rarely conducted or justified; for our purpose of estimating directly averted outcomes, 

we define our estimand and estimators based on a one-stage RCT, with notation closely aligned to 

that of Hudgens and Halloran.14 

     Consider a one-stage RCT that consists of 𝑁 individuals indexed by 𝑗 = 1,… ,𝑁 with a large 

𝑁.14 Consider 𝑞 + 2 evenly spaced measurement intervals for 𝑞 ∈ ℕ. Let 𝑙 ∈ {0, … , 𝑞 + 1} denote 

each interval with baseline measurements taken in interval 0, and 𝑞 + 1 representing the end of 

follow-up.15 Let 𝑋!  denote the assigned vaccination time, where 𝑥! ∈ {0,… , 𝑞 + 1} are possible 

realizations of 𝑋! .16 Vaccination occurs at the beginning of each interval, whereas 𝑥! = 𝑞 + 1 

denotes unvaccinated throughout. Let 𝐗 = (𝑋", … , 𝑋#) denote the vaccination times individuals 
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were assigned. Let 𝐱 denote a possible realization of 𝐗. Let 𝒳(𝑁) denote the set of all possible 

(𝑞 + 1)# vaccination time allocations for the group, for which 𝐱 ∈ 𝒳(𝑁). Throughout we assume 

perfect compliance (i.e., assignment to a particular vaccination time is equivalent to receipt of 

vaccination at that time if the person is still alive), no loss-to-follow-up, and no measurement error. 

In an ideal one-stage RCT, these assumptions are expected to hold. 

      Here, interference is assumed—that is, the potential outcome for any individual depend on 

vaccination assignments of every other individual in the group.14 Let  𝑌$%",!(𝐱) ∈ {0,1} be a 

cumulative indicator of experiencing the outcome (e.g., death) before the beginning of interval 𝑞 +

1 for individual 𝑗 had the group followed the vaccination schedule 𝐱 ∈ 𝒳(𝑁). By convention, 

𝑌',! ≡ 0.17  

      Let 𝛒 = {𝑞 + 1, 𝑑; 𝜌', … , 𝜌$} denote parameterizations that govern the distribution of 𝐗, where 

𝑞 + 1 is the number of potential vaccination times, 𝑑 is the number of days of each interval, 𝜌( is 

the proportion of individuals assigned to 𝑥 ∈ {0,… , 𝑞 + 1} such that ∑ 𝜌(
$%"
()' = 1. We assume 𝛒 

is a mixed individual assignment strategy,14,18 as defined in eAppendix 2. In words, 𝛒 randomly 

assigns 𝜌' × 100% of the individuals to receive vaccination at baseline, 𝜌" × 100% to receive 

vaccination at the beginning of interval 1, and so on, with 𝜌$%" × 100% to remain unvaccinated 

throughout.18 Let 𝛟 = {𝑞 + 1, 𝑑; 𝟎} denote no vaccination. To quantify vaccine-averted outcomes, 

our goal is to assess the impact of some vaccination strategy 𝛒 compared to 𝛟. 

      At baseline, individuals are randomly assigned to 𝐗  conditional on a mixed individual 

assignment strategy (i.e., fixed proportions of individuals [e.g., 20%, 30%, 50%] were assigned to 

receive vaccination at specific times [e.g., Day 0, Day 60, Day 120], respectively; see definition 

in eAppendix 2). Note that random assignments 𝐗 occurs only at baseline, even though individuals 

receive vaccination at different times. This study design is referred to as a “one-stage” RCT 
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because randomization takes place only once, in contrast to the “two-stage” RCT described by 

Hudgens and Halloran,14 in which groups are first randomized to different strategies and then 

individuals within each group are randomized to vaccination conditional on their group’s assigned 

strategy. Let 𝑌B$%"(𝑥; 𝛒) denote the group average potential outcome as defined in eAppendix 2, 

which is equivalent to population average potential outcome14 because there is only one group. Let 

Δ𝑌B*%"(𝑥; 𝛒) = 𝑌B*%"(𝑥; 𝛒) − 𝑌B*(𝑥; 𝛒) for 𝑙 ∈ {0, … , 𝑞} be the difference in 𝑌B  between intervals 𝑙 

and 𝑙 + 1.19  

3 Causal estimand and estimators for quantifying outcomes directly averted by vaccination 

3.1 Causal estimand  

In our prior work with vaccination at a single time point,13 we defined the “direct impact” estimand 

to quantify outcomes directly averted among vaccinated individuals as the number of vaccinated 

individuals multiplied by the direct effect (DE)14 for vaccination at the baseline time point. In 

notation, the number of outcomes directly averted by 𝛒 = {1, 𝑑; 𝜌'	 } (i.e, vaccination of 𝜌'	  at the 

beginning of a single interval, with interval duration 𝑑), compared to no vaccination 𝛟 = {1, 𝑑; 0}, 

is: 

𝛿",(𝛟, 𝛒) = 𝑁𝜌'F𝑌B"(1; 𝛒) − 𝑌B"(0; 𝛒)G 

= 𝑁𝜌'𝐷𝐸"((1,0); 𝛒).							(1) 

       When vaccination occurs at multiple time points, there could be multiple versions of direct 

effects. A direct effect can be a contrast between non-vaccination and some vaccination time 𝑥- ∈

{0,… , 𝑞}, conditional on 𝛒 (e.g., comparing individuals unvaccinated versus vaccinated at interval 

0, or unvaccinated versus vaccinated at interval 1). In notation, the direct effect comparing 

probability of having developed the outcome by the beginning of interval 𝑞 + 1 for an individual 
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unvaccinated throughout versus assigned to 𝑥′  when the group follows strategy 𝛒 = {𝑞 +

1, 𝑑; 𝜌'	 , … , 𝜌$} is: 

𝐷𝐸$%"((𝑞 + 1, 𝑥-); 𝛒) = 𝑌B$%"(𝑞 + 1; 𝛒) − 𝑌B$%"(𝑥-; 𝛒).						(2) 

      Now, extending the estimand in equation (1) for vaccination at two time points (i.e., 𝑥′ = 0 or 

𝑥′ = 1, as compared to unvaccinated 𝑥 = 2), we consider the direct effect of 𝑥- ∈ {0,1} compared 

to unvaccinated throughout, weighted by the number of individuals assigned with 𝑥-, and summed 

across 𝑥- ∈ {0,1}. In notation, the number of outcomes directly averted by 𝛒 = {2, 𝑑; 𝜌'	 , 𝜌"	 }, 

compared to no vaccination 𝛟 = {2, 𝑑; 𝟎}, is: 

Definition 1 (Causal estimand for directly averted outcomes for vaccination at two time points) 

𝛿.,(𝛟, 𝛒) = 𝑁 ⋅ {𝜌'	 ⋅ [𝑌B.(2; 𝛒) − 𝑌B.(0; 𝛒)] + 𝜌"		 ⋅ [𝑌B.(2; 𝛒) − 𝑌B.(1; 𝛒)]}						(3) 

= 𝑁 ⋅ Q𝜌'	 ⋅ 𝐷𝐸.F(2,0); 𝛒G + 𝜌"	 ⋅ 𝐷𝐸.F(2,1); 𝛒GR. 

      eAppendix 3 extends 𝛿.,(𝛟, 𝛒) to an arbitrary number of vaccination times. eAppendix 4 

shows that 𝛿$%", (𝛟, 𝛒)  is the lower bound on outcomes averted among both vaccinated and 

unvaccinated individuals when the indirect effect is non-negative. However, the indirect effect can 

be negative when transmission or fatality parameters vary over time, as we showed earlier for 

vaccination at a single time point.13 Therefore, in the more general case of vaccination at multiple 

time points, the indirect effect is not guaranteed to be non-negative under many realistic scenarios.  

3.2 Unbiased estimator 

Define 𝑌S.(𝑥; 𝛒) =
∑ 0!,#(𝐗)4[6#)(]$
#%&
∑ 4[6#)(]$
#%&

 for 𝑥 ∈ {0,1,2}. That is, 𝑌S.(𝑥; 𝛒) is the cumulative incidence 

by the beginning of interval 2 for individuals assigned to 𝑥 under strategy 𝛒. Then the estimator 

for 𝛿.,(𝛟, 𝛒) in equation (3) is: 

𝛿.T
,(𝛟, 𝛒) = 	𝑁 ⋅ Q𝜌'	 ⋅ U𝑌S.(2; 𝛒) − 𝑌S.(0; 𝛒)V + 𝜌"	 ⋅ U𝑌S.(2; 𝛒) − 𝑌S.(1	; 𝛒)VR.						(4) 



 8 

      eAppendix 5 proves that 𝛿$%"X,(𝛟, 𝛒) is an unbiased estimator for 𝛿$%", (𝛟, 𝛒) for 𝑞 ∈ ℕ in a 

one-stage RCT under mixed assignment strategy 𝛒. Note that 𝜌( for 𝑥 ∈ {0,1, … , 𝑞 + 1} is known 

and fixed under a mixed assignment strategy 𝛒 in an RCT, although it must be estimated in an 

observational setting. 

3.3 Hazard difference estimator 

As summarized in the literature review (eAppendix 1), recent empirical studies4–8 often used what 

we refer to as the hazard difference estimator, which relies on the number at risk and the number 

of new cases among individuals vaccinated (and not-yet-vaccinated) by a given time to quantify 

outcomes directly averted among vaccinated individuals.  

      Let Δ𝑌S*%"(𝑥; 𝛒) = 𝑌S*%"(𝑥; 𝛒) − 𝑌S*(𝑥; 𝛒)  for 𝑙 ∈ {0, … , 𝑞} . Equation (5) defines the hazard 

difference estimator for two vaccination times (see eAppendix 6 for extension to an arbitrary 

number of vaccination times).  

Definition 2 (Hazard difference estimator for directly averted outcomes for vaccination at two time 

points) 

𝛿.T
,∗(𝛟, 𝛒) = 𝑁Y'9(𝛒) ZℎS":(𝛒) − ℎS"9(𝛒)\ + 𝑁Y"9(𝛒) ZℎS.:(𝛒) − ℎS.9(𝛒)\					(5) 

where ℎS"9(𝛒) = Δ𝑌S"(0; 𝛒)  is the incidence among vaccinated individuals by the beginning of 

interval 1, ℎS":(𝛒) =
;&<0=&(";𝛒)%;!<0=&(.;𝛒)

;&%;!
 is the incidence among not-yet-vaccinated individuals by 

the beginning of interval 1 (Note this quantity is the combination of two distinct groups—

individuals assigned to 𝑥 = 1 and 𝑥 = 2), 𝑁Y'9(𝛒) = 𝑁𝜌' is the number survived by the beginning 

of interval 0 among individuals assigned to 𝑥 = 0 , 𝑁Y"9(𝛒) = 𝑁 ^𝜌' Z1 − 𝑌S"(0; 𝛒)\ + 𝜌" Z1 −

𝑌S"(1; 𝛒)\_ is the combined number survived by the beginning of interval 1 among individuals 
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assigned to 𝑥 = 0 and 𝑥 = 1, ℎS.9(𝛒) =
;'<0=!(';𝛒)%;&<0=!(";𝛒)

;'@"A0=&(';𝛒)B%;&@"A0=&(";𝛒)B
 is the hazard among vaccinated 

individuals by the beginning of interval 2, ℎS.:(𝛒) =
<0=!(.;𝛒)
"A0=&(.;𝛒)

 is the hazard among not-yet-

vaccinated individuals by the beginning of interval 2.  

      To give intuition for the unbiased estimator and the hazard difference estimator, consider the 

following example (Figure 1). Suppose we observe an ideal trial randomizing 6 individuals into 

three arms according to the strategy 𝛒∗ = {2,60; "
C
, "
C
}. One-third of the individuals are randomly 

assigned to vaccination at baseline (𝑥 = 0), one-third to vaccination at the beginning of interval 1 

(𝑥 = 1), and the remaining to no vaccination throughout (𝑥 = 2). As illustrated in Figure 1A, the 

unbiased estimator gives 𝛿.T
,(𝛟, 𝛒∗) = 	6 ⋅ Q𝜌'	 ⋅ U𝑌S.(2; 𝛒∗) − 𝑌S.(0; 𝛒∗)V + 𝜌"	 ⋅ U𝑌S.(2; 𝛒∗) −

𝑌S.(1	; 𝛒∗)VR = 6 ⋅ ^"
C
⋅ (1 − 0) + "

C
⋅ Z1 − "

.
\_ = 3 . As illustrated in Figure 1B, the hazard 

difference estimator gives 𝛿.T
,∗(𝛟, 𝛒∗) = 𝑁Y'9(𝛒∗) ZℎS":(𝛒∗) − ℎS"9(𝛒∗)\ + 𝑁Y"9(𝛒∗) ZℎS.:(𝛒∗) −

ℎS.9(𝛒∗)\ = 2 ⋅ Z"
.
− 0\ + 3 ⋅ (1 − 0) = 4.  
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FIGURE 1 | Schematic representation of an ideal randomized controlled trial with 6 individuals 

(horizontal lines) under the strategy 𝛒∗ = {2,60; "
C
, "
C
} . One-third of individuals are randomly 

assigned to vaccination at baseline (𝑥 = 0), one third to vaccination at the beginning of interval 1 

(𝑥 = 1), and the remaining to no vaccination throughout (𝑥 = 2). The dashed vertical lines 

represent the beginning of each interval. (A) The unbiased estimator considers the cumulative 

incidence in each arm. Note 𝑌S*(𝑥; 𝛒∗) is the cumulative incidence by the beginning of interval 𝑙 

among individuals assigned to vaccination time 𝑥  under strategy 𝛒∗ . (B) Hazard difference 

estimator considers the hazards and survival among vaccinated and not-yet-vaccinated individuals.  

Note ℎS*%"9 (⋅) (or ℎS*%": (⋅)) is the hazard for vaccinated (or not-yet-vaccinated) individuals from 

interval 𝑙 to 𝑙 + 1. 

4 Bias of the hazard difference estimator for the causal estimand 

A 

B 
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Now, we use analytical and simulation approaches to examine the bias of 𝛿.T
,∗(𝛟, 𝛒) relative to 

the causal estimand. 

4.1 Analytic comparison 

First, re-write the causal estimand 𝛿.,(𝛟, 𝛒) as follows (See derivation in eAppendix 3): 

𝛿.,(𝛟, 𝛒) 

= 𝑁 ⋅ a𝜌' ⋅ b
𝜌"Δ𝑌B"(1; 𝛒) + 𝜌.Δ𝑌B"(2; 𝛒)

𝜌" + 𝜌.
− Δ𝑌B"(0; 𝛒)c

+ U(𝜌' + 𝜌") ⋅ Δ𝑌B.(2; 𝛒) − F𝜌'Δ𝑌B.(0; 𝛒) + 𝜌"Δ𝑌B.(1; 𝛒)GVd						(6) 

      Then, expand 𝐸 ^𝛿.T
,∗(𝛟, 𝛒)_ as follows (See derivation in equation [S13] eAppendix 6): 

𝐸 ^𝛿.T
,∗(𝛟, 𝛒)_ = 𝐸 ^𝑁Y'9(𝛒) ZℎS":(𝛒) − ℎS"9(𝛒)\ + 𝑁Y"9(𝛒) ZℎS.:(𝛒) − ℎS.9(𝛒)\_ 

= 𝑁e𝜌' ⋅ b
𝜌"Δ𝑌B"(1; 𝛒) + 𝜌.Δ𝑌B"(2; 𝛒)

𝜌" + 𝜌.
− Δ𝑌B"(0; 𝛒)c

+ 𝐸 f(𝜌' + 𝜌") ⋅
𝜌' Z1 − 𝑌S"(0; 𝛒)\ + 𝜌" Z1 − 𝑌S"(1; 𝛒)\

(𝜌' + 𝜌") Z1 − 𝑌S"(2; 𝛒)\
⋅ Δ𝑌S.(2; 𝛒)g

− F𝜌'Δ𝑌B.(0; 𝛒) + 𝜌"Δ𝑌B.(1; 𝛒)Gh.				(7) 

     If ;'@"A0
=&(';𝛒)B%;&@"A0=&(";𝛒)B

(;'%;&)@"A0=&(.;𝛒)B
= 1, then equation (7) equals (6) (See proof in eAppendix 6). That 

is,  𝛿.T
,∗(𝛟, 𝛒) is an unbiased estimator under the null (i.e., when the survival is the same between 

those assigned to no vaccination and those assigned with 𝑥 = 0  or 1 ). However, if 
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;'@"A0=&(';𝛒)B%;&@"A0=&(";𝛒)B
(;'%;&)@"A0=&(.;𝛒)B

≠ 1, then  𝛿.T
,∗(𝛟, 𝛒) is biased relative to the causal estimand, implying 

that it is biased if vaccination has a non-null effect. 

      eAppendix 7 provides an alternative unbiased estimator for quantifying directly averted 

outcomes with a similar (but not identical) expression and have same data requirement as 

𝛿.T
,∗(𝛟, 𝛒). The alternative unbiased estimator allows estimation of directly averted deaths using 

data aggregated by vaccination status.  

4.2 Simulation comparison 

4.2.1 Scenarios 

We simulate an epidemic with strategy 𝛒′ = {2, 60; 0.2,0.3} under different infection-fatality rate 

(IFR), vaccine efficacy against infection (VEinf), or vaccine efficacy against death given infection 

(VEdeath). We examine the bias of the hazard difference estimator 𝛿.T
,∗(𝛟, 𝛒′) relative to the causal 

estimand 𝛿.,(𝛟, 𝛒′), where 𝛟 = {2, 60; 𝟎}, and identify the conditions under which the bias would 

be substantial (Table 1).  

TABLE 1 | Scenarios for simulations, varied by infection-fatality rate, vaccine efficacy against 
infection (VEinf) and vaccine efficacy against death given infection (VEdeath) 

Scenario Infection-fatality rate Vaccine efficacy 
Scenario 1 1% VEinf = 90%; VEdeath = 0% 
Scenario 2 10% VEinf = 90%; VEdeath = 0% 
Scenario 3 100% VEinf = 90%; VEdeath = 0% 
Scenario 4 1% VEinf = 0%; VEdeath = 90% 
Scenario 5 10% VEinf = 0%; VEdeath = 90% 
Scenario 6 100% VEinf = 0%; VEdeath = 90% 
Scenario 7 1% VEinf = 90%; VEdeath = 90% 
Scenario 8 10% VEinf = 90%; VEdeath = 90% 
Scenario 9 100% VEinf = 90%; VEdeath = 90% 

  

      In the main text, we explore scenarios with varying IFR, VEinf, and VEdeath, including several 

extreme scenarios for illustrative purposes. For sensitivity analyses, we explore scenarios with 

varying number of effective contacts (𝛽), as well as more realistic parameter values for 𝛽, IFR, 



 13 

VEinf, and VEdeath, specifically corresponding to seasonal flu, measles, and COVID-19 (wild-type 

strain).  

4.2.2 Model 

Consider a hypothetical RCT with strategy 𝛒′ = {2, 60; 0.2,0.3}, in which interval 0 spans Days 

0-59, interval 1 spans Days 60-119, and interval 2 is the post-follow-up period on or after Day 120, 

such that 20% of individuals can be assigned to vaccination at Day 0, 30% to vaccination at Day 

60, or the rest remain unvaccinated throughout. In the susceptible-infected-recovered-death (SIRD) 

model, individuals are stratified by time of vaccination. Within each stratum, we specify a 

continuous-time SIRD model. The subscript 0 represents those assigned to receive vaccination in 

the beginning of Day 0, 1 for those assigned to receive vaccination in the beginning of Day 60, 

and 2 for the never vaccinated. For those receiving vaccination in the beginning of Day 60, vaccine 

efficacies against infection (𝜃") and death given infection (𝜅") are time-varying variables that come 

in effect on and after Day 60 (Table S4). The SIRD model is defined in term of continuous time 𝑡 

as follows: 
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𝑑𝑆.(𝑡)
𝑑𝑡 = −𝜆(𝑡) ⋅ 𝑆.(𝑡)

𝑑𝑆"(𝑡)
𝑑𝑡 = −𝜃"(𝑡) ⋅ 𝜆(𝑡) ⋅ 𝑆"(𝑡)

𝑑𝑆'(𝑡)
𝑑𝑡 = −𝜃 ⋅ 𝜆(𝑡) ⋅ 𝑆'(𝑡)

𝑑𝐼.(𝑡)
𝑑𝑡 = 𝜆(𝑡) ⋅ 𝑆.(𝑡) − 𝛾 ⋅ 𝐼.(𝑡)

𝑑𝐼"(𝑡)
𝑑𝑡 = 𝜃"(𝑡) ⋅ 𝜆(𝑡) ⋅ 𝑆"(𝑡) − 𝛾 ⋅ 𝐼"(𝑡)

𝑑𝐼'(𝑡)
𝑑𝑡 = 𝜃 ⋅ 𝜆(𝑡) ⋅ 𝑆'(𝑡) − 𝛾 ⋅ 𝐼'(𝑡)

𝑑𝑅.(𝑡)
𝑑𝑡 = (1 − 𝜇) ⋅ 𝛾 ⋅ 𝐼.(𝑡)

𝑑𝑅"(𝑡)
𝑑𝑡 = (1 − 𝜅"(𝑡) ⋅ 𝜇) ⋅ 𝛾 ⋅ 𝐼"(𝑡)

𝑑𝑅'(𝑡)
𝑑𝑡

= (1 − 𝜅 ⋅ 𝜇) ⋅ 𝛾 ⋅ 𝐼'(𝑡)

𝑑𝐷.(𝑡)
𝑑𝑡

= 𝜇 ⋅ 𝛾 ⋅ 𝐼.(𝑡)

𝑑𝐷"(𝑡)
𝑑𝑡

= 𝜅"(𝑡) ⋅ 𝜇 ⋅ 𝛾 ⋅ 𝐼"(𝑡)

𝑑𝐷'(𝑡)
𝑑𝑡

= 𝜅 ⋅ 𝜇 ⋅ 𝛾 ⋅ 𝐼'(𝑡) ⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

(8) 

where 𝛾 = recovery rate, 𝜆(𝑡) = 𝛽 ⋅ 4'(D)%4&(D)%4!(D)
#(D)

 (the hazard rate of infection), 𝛽 = the number 

of effective contacts made by a typical infectious individual per unit time, 𝜇 =	probability of death 

due to infection, 𝑁(𝑡) = sum of all individuals alive at 𝑡. eAppendix 8 shows the parameters and 

initial values used in simulations. For simulation, the model was discretized to day time-steps. 

Code is available at https://github.com/katjia/vax_rollout_impact. 

4.2.3. Simulations 

Figure 2 compares the expected value of hazard difference estimator (i.e., 𝐸 ^𝛿.T
,∗(𝛟, 𝛒′)_) with 

the causal estimand (i.e., 𝛿.,(𝛟, 𝛒′)) under Scenarios outlined in Table 1; eAppendix 9 shows the 



 15 

bias of the hazard difference estimator relative to the causal estimand on the absolute and relative 

scales.  

      No infections were averted when VEinf = 0% (Figure 2A; Scenarios 4 to 6). In Scenarios where 

VEinf = 90%, the hazard difference estimator substantially overestimates the averted infections 

(Figure 2A; Scenarios 1 to 3, 7 to 9). This is because given the high reproduction number (𝑅' ≈

3.57 ) and a high VEinf, susceptibles were preferentially depleted among the unvaccinated 

individuals quickly, such that by interval 1, individuals with 𝑥 = 2  had lower survival from 

infection than the average survival among individuals with 𝑥 = 0 and 𝑥 = 1 (Figure S3)—that is, 

;'( E"A0=&@';𝛒(BF%;&(E"A0=&@";𝛒(BF

(;'(%;&( )@"A0=&(.;𝛒()B
> 1 in equation (7). eAppendix 11 varies the Scenarios by the number 

of effective contacts (𝛽) and show that the overestimation is more pronounced the higher 𝛽 is. 

      The hazard difference estimator substantially overestimates the averted deaths when 

IFR=100%, while the overestimation is trivial when IFR≤10% (Figure 2B). This is due to the 

similar survival from death between vaccinated and unvaccinated individuals when IFR is low—

that is, 
;'(E"A0=&@';𝛒′BF%;&(E"A0=&@";𝛒′BF

(;'(%;&( )E"A0=&@.;𝛒′BF
≈ 1.  

      eAppendix 6 repeats the same analyses for vaccination at additional time points and over a 

longer period, which shows that averted infections are even more severely overestimated compared 

with vaccination at two time points.  Consistent with the main-text finding, the hazard difference 

estimator sightly overestimates averted deaths when IFR≤10%. In eAppendix 12, we consider 

more realistic parameter values for seasonal flu, measles, and COVID-19 (wild-type strain). As 

with the main analyses, 𝛿.T
,∗(𝛟, 𝛒′) substantially overestimates averted infections for measles due 

to high basic reproduction number (𝑅' = 18) and high VEinf. It also slightly overestimates averted 

infections for seasonal flu and COVID-19 (wild-type), given a low 𝑅' (i.e., ≤2.2) and VEinf > 0. 
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The overestimation of averted deaths is trivial due to the low IFR (≤ 3% for all pathogens) (Figure 

S5). 
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6 Discussion 

Recent empirical studies have estimated COVID-19 outcomes directly averted by vaccine rollout 

programs among vaccinated individuals. Here, we define a causal estimand for quantifying directly 

averted outcomes for vaccination at multiple time points and develop an unbiased estimator. We 

also examine a popular estimator used by recent empirical studies—the hazard difference estimator 

(as we call it)—and showed that it is biased relative to the causal estimand when vaccination has 

a non-null effect, as it fails to incorporate the preferential depletion of susceptibles among the 

unvaccinated individuals. The simulations performed here, albeit limited, suggest that the bias is 

substantial for averted infections, as susceptibles were preferentially depleted among the 

unvaccinated group quickly (due to high effective contacts and high vaccine efficacy against 

infection). On the other hand, the bias for averted deaths is small when IFR is ≤10% (since survival 

is similar between vaccinated and unvaccinated individuals), as is the case for many important 

infections. 

      Empirical studies frequently used the hazard difference estimator. As a measure, the hazard 

among (un)vaccinated individuals is restricted to those who have not experienced the outcome 

between baseline and the start of interval 𝑘 for 𝑘 ≥ 1. Consequently, the interval-specific hazard 

is subject to differential depletion of susceptibles among the unvaccinated group over time 

(assuming vaccines have protective effects).20 However, the hazard difference estimator multiplies 

the number of vaccinated survivors by the hazard difference between vaccinated and unvaccinated 

individuals—implicitly assuming that the unvaccinated individuals have the same counterfactual 

survival as the vaccinated individuals, thereby failing to account for such differential depletion of 

susceptibles among the unvaccinated group. As our simulations show, the hazard difference 

estimator overestimates the number of infections averted when susceptibles are preferentially and 
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quickly depleted among unvaccinated individuals given a high reproduction number (𝑅' ≈ 3.57) 

and a high VEinf. The bias is less pronounced for averted deaths when IFR is low, as survival 

between vaccinated and unvaccinated individuals is similar. Therefore, for COVID-19 studies 

using the hazard difference estimator, the averted infection estimate is likely more biased than the 

averted death estimate. 

      Researchers can use data by aggregated by vaccination status to estimate averted outcomes by 

following the procedures outlined in eAppendices 7 and 13. Most publicly available data from 

vaccine registries are aggregated by vaccination status due to privacy or other considerations. In 

these situations, we recommend clearly specifying the intervals to which survival and hazard 

pertain. An example dataset is shown in Table S11, which organizes the hazard and the number 

of survivors within the same row, specifying the hazard to be one interval ahead of the number of 

survivors. This arrangement facilitates applying formulas for the alternative unbiased estimator or 

hazard difference estimator. The table also includes an explanatory footnote clarifying the intervals 

corresponding to the hazard and the number of survivors. 

      In the main text, we focus on vaccine-averted outcomes. Some other empirical studies 

estimated vaccine-avertible deaths—deaths that could have been averted by vaccination, but were 

not because of a failure to vaccinate. They used the hazard difference estimator for outcomes 

directly avertible by vaccination by multiplying the hazard difference with the number of 

unvaccinated survivors and summing across weeks.11,12 eAppendix 14 defines the estimand, the 

unbiased estimator, and the hazard difference estimator for outcomes directly avertible, and shows 

simulation results under the same Scenarios as outlined in Table 1. Compared to the causal 

estimand, the hazard difference estimator could recover a similar value for avertible deaths when 

IFR is modest (≤10%) or when vaccines are highly effective at preventing death given infection 
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(VEdeath = 90%) (Figures S6 & S7). Note that when estimating directly avertible outcomes (or 

when comparing to any other counterfactual vaccination strategy than no vaccination), researchers 

need data disaggregated by vaccination time to use the unbiased estimator. 

      One major limitation is that the causal estimand and estimators proposed here are developed 

in the context of an ideal RCT assuming no confounding, no selection bias, perfect compliance, 

and no other sources of biases. In eAppendix 13, we discussed identifying the causal estimand for 

averted outcomes using observational data aggregated by vaccination status in the absence of 

confounding. In most observational settings, however, there may be strong confounding by vaccine 

uptake (i.e., individuals who choose to be vaccinated are also more likely to avoid infection, or 

elderly individuals are more likely to be vaccinated and also more likely to die from infection). In 

addition, individuals may reduce protective behaviors after vaccination (i.e., risk compensation),23 

and those who have been infected are also less likely to receive vaccination.22 Confounding is also 

a concern in existing studies that estimate averted deaths from observational data, as they adjust 

for it by stratifying on only simplistic covariates (Table S1). Although observational studies 

violate the assumptions of an ideal RCT, addressing all these violations is beyond the scope of this 

paper. Future research could use observational data to emulate a target trial similar to the one 

described here for estimating vaccine-averted outcomes. 

       In conclusion, motivated by recent empirical studies estimating outcomes directly averted by 

vaccine rollout programs, we define a causal estimand for directly averted outcomes under 

interference, which is a lower bound on the total outcomes averted in the entire population when 

indirect effect is non-negative. We also develop an unbiased estimator in the context of a one-stage 

RCT and examine the bias of a popular estimator (the hazard difference estimator). The hazard 

difference estimator is biased relative to the causal estimand when vaccination has a non-null effect 
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because it does not incorporate differential depletion of susceptibles among unvaccinated 

individuals. Our simulations, albeit limited, show that the hazard difference estimator could 

substantially overestimate the averted infections when the basic reproduction number and vaccine 

efficacy against infection are high, while the overestimation is small for averted deaths under 

modest IFR, which is the case for many important infections.  
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eAppendix 1. Literature review of studies estimating the number of COVID-19 outcomes 

directly averted among vaccinated individuals or the total number of outcomes averted 

among both vaccinated and unvaccinated individuals 

Recent studies estimated COVID-19 outcomes averted by vaccine rollout programs either by 

targeting the outcomes directly averted among vaccinated individuals1–5 or by targeting the total 

outcomes averted among both vaccinated and unvaccinated individuals.6–10 To better understand 

the estimation methodologies, we reviewed selected literature listed in Table S1. 
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eAppendix 2. Defining individual, group, and population average potential outcomes 

1 Mixed individual assignment strategy 

Let 𝛒 = {𝑞 + 1, 𝑑; 𝜌!, … , 𝜌"} , where ∑ 𝜌#
"$%
#&! = 1 , be a parameterization that governs the 

distribution of vaccination times 𝐗 . Let 𝐾# ≡ 𝑁 ⋅ 𝜌# ≡ ∑ 𝐼(𝑋' = 𝑥)'  for 𝑥 ∈ {0,… , 𝑞 + 1}  and 

𝑗 ∈ {1, … , 𝑁}. Define 𝛒 to be a mixed individual assignment strategy if 𝐾# is fixed under 𝛒, with 

0 < 𝐾# < 𝑁 for all 𝑥 ∈ {0,… , 𝑞 + 1} and each of the (!
∏ (,!!)
"#$
!%&

 possible individual assignments 

receiving equal probability.11,12 

2 Type A parameterization with categorical treatment variable 

Hudgens and Halloran11 considered a mixed assignment strategy12 for binary treatment variable 

(i.e., vaccination or non-vaccination) in defining the individual average potential outcome; their 

approach was referred to as Type A parameterization by VanderWeele and Tchetgen Tchetgen.13 

Here, we define the individual average potential outcomes using Type A parameterization for 

categorical treatment variable. 

      Assume 𝛒 is a mixed assignment strategy. Let 𝜋(𝐗 = 𝐱; 𝛒) denote the probability that the 

group is assigned with 𝐗  given parameter 𝛒 . The vaccination times 𝐗  are randomly assigned 

conditional on {𝐾!, … , 𝐾"$%} with probability mass function: 

𝜋(𝐗 = 𝐱; 𝛒) =
∏ 𝐼?∑ 𝐼?𝑋' = 𝑥@ = 𝐾#(

'&% @"$%
#&!

𝑁!
∏ (𝐾#!)
"$%
#&!

 

where (!
∏ (,!!)
"#$
!%&

 is the number of ways to assign exactly 𝐾!, … , 𝐾"$% individuals to 𝑥 = 0,… , 𝑞 +

1, respectively. 

3 Individual and group average potential outcomes 



 8 

By the beginning of interval 𝑞 + 1, the individual average potential outcome11 for individual 𝑗 

with time of vaccination 𝑥 in the group under strategy 𝛒 is: 

𝑌C"$%,'	 (𝑥; 𝛒) ≡ D 𝑌"$%,'?𝐱0' = 𝛚, 𝑥' = 𝑥@ Pr𝛒?𝐗0' = 𝛚|𝑋' = 𝑥@
𝛚∈𝒳((0%)

 

where Pr𝛒?𝐗0' = 𝛚|𝑋' = 𝑥@ = 56𝐗'(&𝛚,8(&#;𝛒:
∑ 56𝐗'(&𝛚),8(&#;𝛒:𝛚)∈𝒳(.'$)

. See Definition 2 in VanderWeele and 

Tchetgen Tchetgen for the analog with a binary treatment variable.13 As they noted,13 if 𝑌C"$%,' is 

defined under Type A parameterization, the proportion of other individuals assigned to, for 

example, 𝑥 = 0, varies depending on whether individual 𝑗 is assigned to 𝑥 = 0. In other words, 

the proportion 𝜌! for others is not held fixed in 𝑌C"$%,'(0; 𝛒) compared to 𝑌C"$%,'(𝑘; 𝛒) for some 

𝑘 > 0, so that the so-called direct effect (which can be written as 𝐷𝐸"$%((𝑘, 0); 𝛒) = 𝑌C"$%(𝑘; 𝛒) −

𝑌C"$%(0; 𝛒) =
∑ <=>"#$,((?;𝛒)0=>"#$,((!;𝛒)@.
(%$

(
)11 does not merit the label “direct effect.” However, this 

issue is negligible under a large group size 𝑁. 

      The group average potential outcome is:  

𝑌C"$%(𝑥; 𝛒) =
∑ 𝑌C"$%,'?𝑥' = 𝑥; 𝛒@(
'&%

𝑁 . 

       

 

  



 9 

eAppendix 3. Causal estimand for outcomes directly averted by vaccination  

1 Extending the causal estimand to an arbitrary number of vaccination times 

For 𝑞 ∈ ℕ, the causal estimand for outcomes directly averted by 𝛒 = {𝑞 + 1, 𝑑; 𝜌!, … , 𝜌"} where 

∑ 𝜌#
"$%
#&! = 1, compared to no vaccination 𝛟 = {𝑞 + 1, 𝑑; 𝟎} is: 

Definition S1 (Causal estimand for directly averted outcomes) 

𝛿"$%A (𝛟, 𝛒) = 𝑁 ⋅D𝜌?	 ⋅ S𝑌C"$%(𝑞 + 1; 𝛒) − 𝑌C"$%(𝑘; 𝛒)T
"

?&!

					(S1) 

= 𝑁 ⋅D𝜌?	 ⋅ 𝐷𝐸"$%?(𝑞 + 1, 𝑘); 𝛒@
"

?&!

 

𝛿"$%A (𝛟, 𝛒) in equation (S1) can be re-written as:  

𝛿!"#$ (𝛟, 𝛒) 

= 𝑁 ⋅*𝜌% ⋅ ,*Δ𝑌/&(𝑞 + 1; 𝛒)
!"#

&'#

−*Δ𝑌/&(𝑘; 𝛒)
!"#

&'#

6
!

%'(

 

= 𝑁 ⋅ ,𝜌( ⋅ 7*Δ𝑌/&(𝑞 + 1; 𝛒)
!"#

&'#

−*Δ𝑌/&(0; 𝛒)
!"#

&'#

9 + 𝜌# ⋅ 7*Δ𝑌/&(𝑞 + 1; 𝛒)
!"#

&'#

−*Δ𝑌/&(1; 𝛒)
!"#

&'#

9 + 𝜌)

⋅ 7*Δ𝑌/&(𝑞 + 1; 𝛒)
!"#

&'#

−*Δ𝑌/&(2; 𝛒)
!"#

&'#

9 +⋯+ 𝜌* ⋅ 7*Δ𝑌/&(𝑞 + 1; 𝛒)
!"#

&'#

−*Δ𝑌/&(ℎ; 𝛒)
!"#

&'#

9+⋯+ 𝜌!

⋅ 7*Δ𝑌/&(𝑞 + 1; 𝛒)
!"#

&'#

−*Δ𝑌/&(𝑞; 𝛒)
!"#

&'#

96	

= 𝑁 ⋅ ,𝜌( ⋅ 7*Δ𝑌/&(𝑞 + 1; 𝛒)
!"#

&'#

−*Δ𝑌/&(0; 𝛒)
!"#

&'#

9 + 𝜌# ⋅ 7*Δ𝑌/&(𝑞 + 1; 𝛒)
!"#

&')

−*Δ𝑌/&(1; 𝛒)
!"#

&')

9 + 𝜌)

⋅ 7*Δ𝑌/&(𝑞 + 1; 𝛒)
!"#

&'+

−*Δ𝑌/&(2; 𝛒)
!"#

&'+

9 +⋯+ 𝜌*,# ⋅ 7*Δ𝑌/&(𝑞 + 1; 𝛒)
!"#

&'*

−*Δ𝑌/&(ℎ − 1; 𝛒)
!"#

&'*

9 +⋯+ 𝜌!

⋅ >Δ𝑌/!"#(𝑞 + 1; 𝛒) − Δ𝑌/!"#(𝑞; 𝛒)?6 
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= 𝑁 ⋅ ,𝜌( ⋅ @Δ𝑌/#(𝑞 + 1; 𝛒) − Δ𝑌/#(0; 𝛒)A + (𝜌( + 𝜌#) ⋅ BΔ𝑌/)(𝑞 + 1; 𝛒) −
𝜌(Δ𝑌/)(0; 𝛒) + 𝜌#Δ𝑌/)(1; 𝛒)

𝜌( + 𝜌#
C + (𝜌( + 𝜌# + 𝜌))

⋅ BΔ𝑌/+(𝑞 + 1; 𝛒) −
𝜌(Δ𝑌/+(0; 𝛒) + 𝜌#Δ𝑌/+(1; 𝛒) + 𝜌)Δ𝑌/+(2; 𝛒)

𝜌( + 𝜌# + 𝜌)
C +⋯+ 7*𝜌%

*,#

%'(

9

⋅ BΔ𝑌/*(𝑞 + 1; 𝛒) −
∑ 𝜌%Δ𝑌/*(𝑘; 𝛒)*,#
%'(

∑ 𝜌%*,#
%'(

C +⋯+7*𝜌%

!

%'(

9 ⋅ BΔ𝑌/!"#(𝑞 + 1; 𝛒) −
∑ 𝜌%Δ𝑌/!"#(𝑘; 𝛒)
!
%'(

∑ 𝜌%
!
%'(

C6	

= 𝑁 ⋅* ,7*𝜌%

&,#

%'(

9 ⋅ BΔ𝑌/&(𝑞 + 1; 𝛒) −
∑ 𝜌%Δ𝑌/&(𝑘; 𝛒)&,#
%'(

∑ 𝜌%&,#
%'(

C6 .
!"#

&'#

							(S2) 

      We assume individuals with 𝑥 = 𝑙 < 𝑞 + 1  have had the same historical probability of 

developing the outcome as those with 𝑥 = 𝑞 + 1, up until 𝑙. Therefore, from the third to the forth 

line, Δ𝑌C%(𝑞 + 1; 𝛒) cancels out Δ𝑌C%(1; 𝛒), since 𝑥 = 1 is unvaccinated before the beginning of 

interval 1; similarly, ∑ Δ𝑌CB(𝑞 + 1; 𝛒)C
B&%  cancels out ∑ Δ𝑌CB(2; 𝛒)C

B&% , since 𝑥 = 2 is unvaccinated 

before the beginning of interval 2, and so on for other vaccination groups. In words, equation (S2) 

is the proportion ever-vaccinated (i.e., ∑ 𝜌?B0%
?&! ) multiplied with the difference between the period 

incidence Δ𝑌CB(⋅) among individuals assigned to no vaccination and the average period incidence 

among individuals ever-vaccinated, summed across time intervals 𝑙 ∈ (1, … , 𝑞 + 1).  

      Furthermore, as we assume individuals with 𝑥 = 𝑙 < 𝑞 + 1  have had the same historical 

probability of developing outcome as those with 𝑥 = 𝑞 + 1, up until 𝑙, we have Δ𝑌CB(𝑞 + 1; 𝛒) =

∑ D𝑘
	 E=>1(?;𝛒)

"#$
𝑘%𝑙
∑ D𝑘

	"#$
𝑘%𝑙

, such that equation (S2) can be written as: 

𝛿!"#$ (𝛟, 𝛒) = 𝑁 ⋅*,7*𝜌%

&,#

%'(

9 ⋅ B
∑ 𝜌%	 Δ𝑌/&(𝑘; 𝛒)
!"#
%'&

∑ 𝜌%	
!"#
%'&

−
∑ 𝜌%Δ𝑌/&(𝑘; 𝛒)&,#
%'(

∑ 𝜌%&,#
%'(

C6						(S3)
!"#

&'#

 

= 𝑁 ⋅ ,*7*𝜌%

&,#

%'(

9 ⋅
∑ 𝜌%	 Δ𝑌/&(𝑘; 𝛒)
!"#
%'&

∑ 𝜌%	
!"#
%'&

!"#

&'#

−**𝜌%Δ𝑌/&(𝑘; 𝛒)
&,#

%'(

!"#

&'#

6						(S4) 
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      Writing Δ𝑌CB(𝑞 + 1; 𝛒) =
∑ D𝑘

	 E=>1(?;𝛒)
"#$
𝑘%𝑙
∑ D𝑘

	"#$
𝑘%𝑙

 also has the advantage of preserving data because they 

are equivalent in an ideal trial while 
∑ D𝑘

	 E=>1(?;𝛒)
"#$
𝑘%𝑙
∑ D𝑘

	"#$
𝑘%𝑙

 can be estimated with a larger sample.   

2 An example: vaccination at two time points 

To be explicit, consider vaccination at two time points. Recall equation (3) that defines outcomes 

directly averted by 𝛒 = {2, 𝑑; 𝜌!, 𝜌%}, compared to no vaccination 𝛟 = {2, 𝑑; 𝟎}: 

𝛿)$(𝛟, 𝛒) 

= 𝑁 ⋅ [𝜌( ⋅ @𝑌/)(2; 𝛒) − 𝑌/)(0; 𝛒)A + 𝜌# ⋅ @𝑌/)(2; 𝛒) − 𝑌/)(1; 𝛒)A 

= 𝑁 ⋅ J𝜌( ⋅ K@Δ𝑌/#(2; 𝛒) + Δ𝑌/)(2; 𝛒)A − @Δ𝑌/#(0; 𝛒) + Δ𝑌/)(0; 𝛒)AL + 𝜌# ⋅ K@Δ𝑌/#(2; 𝛒) + Δ𝑌/)(2; 𝛒)A − @Δ𝑌/#(1; 𝛒) + Δ𝑌/)(1; 𝛒)ALM 

= 𝑁 ⋅ J𝜌( ⋅ K@Δ𝑌/#(2; 𝛒) + Δ𝑌/)(2; 𝛒)A − @Δ𝑌/#(0; 𝛒) + Δ𝑌/)(0; 𝛒)AL + 𝜌# ⋅ @Δ𝑌/)(2; 𝛒) − Δ𝑌/)(1; 𝛒)AM 

= 𝑁 ⋅ N𝜌( ⋅ @Δ𝑌/#(2; 𝛒) − Δ𝑌/#(0; 𝛒)A + (𝜌( + 𝜌#) OΔ𝑌/)(2; 𝛒) − B
𝜌(Δ𝑌/)(0; 𝛒) + 𝜌#Δ𝑌/)(1; 𝛒)

𝜌( + 𝜌#
CPQ 

Assume	Δ𝑌/#(2; 𝛒) =
𝜌#Δ𝑌/#(1; 𝛒) + 𝜌)Δ𝑌/#(2; 𝛒)

𝜌# + 𝜌)
⟶ 

= 𝑁 ⋅ X𝜌( ⋅ Y
𝜌#Δ𝑌/#(1; 𝛒) + 𝜌)Δ𝑌/#(2; 𝛒)

𝜌# + 𝜌)
− Δ𝑌/#(0; 𝛒)Z + K(𝜌( + 𝜌#) ⋅ Δ𝑌/)(2; 𝛒) − @𝜌(Δ𝑌/)(0; 𝛒) + 𝜌#Δ𝑌/)(1; 𝛒)AL[ 

= 𝑁 ⋅*,7*𝜌%

&,#

%'(

9 ⋅ B
∑ 𝜌%	 Δ𝑌/&(𝑘; 𝛒))
%'&

∑ 𝜌%	)
%'&

−
∑ 𝜌%Δ𝑌/&(𝑘; 𝛒)&,#
%'(

∑ 𝜌%&,#
%'(

C6
)

&'#

 

= 𝑁 ⋅ ,*7*𝜌%

&,#

%'(

9 ⋅ B
∑ 𝜌%	 Δ𝑌/&(𝑘; 𝛒))
%'&

∑ 𝜌%	)
%'&

C
)

&'#

−**𝜌%Δ𝑌/&(𝑘; 𝛒)
&,#

%'(

)

&'#

6 
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eAppendix 4 Conditions under which directly averted outcomes is a lower bound on overall 

averted outcomes 

To identify conditions under which the number of directly averted outcomes among vaccinated 

individuals is a lower bound on the total number of outcomes averted, we first define the “overall 

impact” estimand to quantify outcomes averted in both vaccinated and unvaccinated individuals. 

Previously, we defined the overall impact estimand for vaccination at a single time point,14 for 

which we now extend to multiple time points. First, we need to define the indirect, total, and overall 

effects for vaccination at multiple time points. 

1 Indirect, total, and overall effects for vaccination at multiple time points 

When vaccination occurs at multiple time points, there could be separate versions of indirect and 

total effects under each possible value 𝑥 ∈ {0,… , 𝑞 + 1}.  

1.1 Indirect effect 

In general, indirect effect can be a contrast between two strategies 𝛒 and 𝛒Z, conditional on 𝑥. In 

notation, the indirect effect comparing probability of having developed the outcome by beginning 

of interval 𝑞 + 1 for an individual assigned to vaccination time 𝑥 when the group follows strategy 

𝛒 versus 𝛒Z	is: 

𝐼𝐸"$%	 ?𝑥; (𝛒, 𝛒Z)@ = 𝑌C"$%(𝑥; 𝛒) − 𝑌C"$%(𝑥; 𝛒Z).						(S5) 

1.2 Total effect 

Total effect can be any contrast between any combinations of (𝑥, 𝛒) and (𝑥F, 𝛒Z). In notation, the 

total effect comparing probability of having developed the outcome by beginning of 𝑞 + 1 for an 

individual assigned to vaccination time 𝑥 when the group follows strategy 𝛒 versus an individual 

with 𝑥′ when the group follows strategy 𝛒Z is: 

𝑇𝐸"$%	 ?(𝑥, 𝑥F); (𝛒, 𝛒Z)@ = 𝑌C"$%(𝑥; 𝛒) − 𝑌C"$%(𝑥F; 𝛒Z).						(S6) 
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      By definition, total effect is the sum of direct and indirect effects: 

𝑇𝐸"$%	 ?(𝑥, 𝑥F); (𝛒, 𝛒Z)@ = 𝑌C"$%(𝑥; 𝛒) − 𝑌C"$%(𝑥F; 𝛒Z) 

= 𝑌C"$%(𝑥; 𝛒) − 𝑌C"$%(𝑥F; 𝛒) + 𝑌C"$%(𝑥F; 𝛒) − 𝑌C"$%(𝑥F; 𝛒Z) 

= 𝐷𝐸"$%((𝑥, 𝑥F); 𝛒) + 𝐼𝐸"$%	 ?𝑥′; (𝛒, 𝛒Z)@.						(S7) 

      Hudgens and Halloran11 also partitioned the total effect into the sum of direct and indirect 

effects for vaccination at a single time point.  

1.3 Overall effect 

The overall effect comparing probability of having developed the outcome by beginning of 𝑞 + 1 

for a typical individual in the group following strategy 𝛒 versus 𝛒Z is: 

𝑂𝐸"$%(𝛒, 𝛒Z) = 𝑌C"$%(𝛒) − 𝑌C"$%(𝛒Z).						(S8) 

2 Partitioning overall effect when comparing no vaccination to some vaccination 

Consider the comparison between no vaccination and a vaccination strategy 𝛒, as our goal is to 

quantify the overall impact of the strategy. Previously, Sobel12 and Hudgens and Halloran11 noted 

that when comparing no vaccination to vaccination at baseline, overall effect is the weighted sum 

of total and indirect effects. Here, we extend the partitioning of overall effect to vaccination at 

multiple time points (Theorem S1).  

Theorem S1 (Overall effect partitioning for no vaccination vs. 𝛒) Let 𝛟 = {𝑞 + 1, 𝑑; 𝟎} for 𝑞 ∈ ℕ 

and 𝑑 ∈ ℤ$. Then  

𝑂𝐸"$%(𝛟, 𝛒) = cD𝜌?	 ⋅ 𝑇𝐸"$%	 ?(𝑞 + 1, 𝑘); (𝛟, 𝛒)@
"

?&!

d + 𝜌"$%	 ⋅ 𝐼𝐸"$%?𝑞 + 1; (𝛟, 𝛒)@. 

Proof. For 𝑞 ∈ ℕ, we have 

𝑂𝐸"$%(𝛟, 𝛒) = 𝑌C"$%(𝛟) − 𝑌C"$%(𝛒) 

All	is	unvaccinated	under	𝛟 ⟶	
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= 𝑌C"$%(𝑞 + 1;𝛟) − 𝑌C"$%(𝛒) 

By	definition,D𝜌?	 = 1
"$%

?&!

⟶ 

= cD𝜌?	 ⋅ 𝑌C"$%(𝑞 + 1;𝛟)
"

?&!

+ 𝜌"$%	 ⋅ 𝑌C"$%(𝑞 + 1;𝛟)d

− cD𝜌?	 ⋅ 𝑌C"$%(𝑘; 𝛒)
"

?&!

+ 𝜌"$%	 ⋅ 𝑌C"$%(𝑞 + 1; 𝛒)d 

=D𝜌?	 ⋅ v𝑌C"$%(𝑞 + 1;𝛟) − 𝑌C"$%(𝑘; 𝛒)w
"

?&!

+ 𝜌"$%	 ⋅ v𝑌C"$%(𝑞 + 1;𝛟) − 𝑌C"$%(𝑞 + 1; 𝛒)w 

=D𝜌?	 ⋅ 𝑇𝐸"$%?(𝑞 + 1, 𝑘); (𝛟, 𝛒)@
"

?&!

+ 𝜌"$%	 ⋅ 𝐼𝐸"$%?𝑞 + 1; (𝛟, 𝛒)@	 

      Consider 𝑞 + 1 = 2. We have	𝑂𝐸C(𝛟, 𝛒) = 𝜌!	 𝑇𝐸C?(2,0); (𝛟, 𝛒)@ + 𝜌%	 𝑇𝐸C?(2,1); (𝛟, 𝛒)@ +

𝜌C	 𝐼𝐸C?2; (𝛟, 𝛒)@. The partitioning is graphically illustrated in Figure S1. 
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FIGURE S1 | Graphical illustration on partitioning overall effect. The two rectangles represent 

a pair of counterfactuals wherein the group follow strategy 𝛒 = {2, 𝑑; 𝜌!, 𝜌%} or 𝛟 = {2, 𝑑; 𝟎}. 

Individuals fall into three categories based on their assigned vaccination time: 1) The dotted region 

represents those who are assigned to 𝑥 = 2 and for whom 𝐼𝐸(2;𝛟, 𝛒) is the difference between 

the counterfactuals; 2) the gridded region represents those who are assigned to 𝑥 = 1 and for 

whom 𝑇𝐸?(2,1); (𝛟, 𝛒)@ is the difference between the counterfactuals; and 3) the stripped region 

represents those who are assigned to 𝑥 = 0 and for whom 𝑇𝐸?(2,0); (𝛟, 𝛒)@ is the difference 

between the counterfactuals. Theorem S1 shows that 𝑂𝐸(𝛟, 𝛒) is a weighted average of three 

effects: 1) 𝐼𝐸?2; (𝛟, 𝛒)@, 2) 𝑇𝐸?(2,1); (𝛟, 𝛒)@, and 3) 𝑇𝐸?(2,0); (𝛟, 𝛒)@, each weighted by the 

proportion of individuals for whom the effect is in operation respectively: 1) 𝜌C for those assigned 

to 𝑥 = 2, 2) 𝜌%  for those assigned to 𝑥 = 1, and 3) 𝜌!  for those assigned to 𝑥 = 0. The time 

interval notation suppressed to reduce clutter. 

3 Defining and partitioning overall impact for vaccination at multiple time points 

3.1 Overall impact 

Now, we use the above definition of overall effect to define the overall impact estimand and apply 

Theorem S1 to partition overall impact into components of direct and indirect effects.  

      The total number of outcomes averted among both vaccinated and unvaccinated individuals by 

strategy 𝛒 = {𝑞 + 1, 𝑑; 𝜌!	 , … , 𝜌"	 }, compared to no vaccination 𝛟 = {𝑞 + 1, 𝑑; 𝟎}, is:  

Definition S2 (Overall impact estimand for quantifying the total number of outcomes averted) 

𝛿"$%G (𝛟, 𝛒) = 𝑁 ⋅ 𝑂𝐸"$%(𝛟, 𝛒). 

      𝛿"$%G (𝛟, 𝛒) addresses the causal question: how many outcomes have been averted among both 

vaccinated and unvaccinated individuals under strategy 𝛒 compared to no vaccination 𝛟? The 

mathematical modeling studies5–10 listed in Table S1 have targeted 𝛿"$%G (𝛟, 𝛒) to estimate total 
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outcomes averted by simulating the epidemic trajectory under no vaccination (𝛟) and comparing 

it with the trajectory under a particular strategy 𝛒 (or with the observed outcomes).  

3.2 Overall impact partitioning 

By Theorem S1 and the definition from equation (S7) 𝑇𝐸"$%?(𝑞 + 1, 𝑘); (𝛟, 𝛒)@ = 𝐼𝐸"$%?𝑞 +

1; (𝛟, 𝛒)@ + 𝐷𝐸"$%?(𝑞 + 1, 𝑘); 𝛒@ for 𝑘 ∈ {0,… , 𝑞}, we decompose 𝛿"$%G (𝛟, 𝛒): 

𝛿"$%G (𝛟, 𝛒) = 𝑁 ⋅ 𝑂𝐸"$%(𝛟, 𝛒) 

= 𝑁 cD𝜌?	 ⋅ 𝑇𝐸"$%?(𝑞 + 1, 𝑘); (𝛟, 𝛒)@
"

?&!

+ 𝜌"$%	 ⋅ 𝐼𝐸"$%?𝑞 + 1; (𝛟, 𝛒)@d 

= 𝑁 cD𝜌?	 ⋅ v𝐷𝐸"$%?(𝑞 + 1, 𝑘); 𝛒@ + 𝐼𝐸"$%?𝑞 + 1; (𝛟, 𝛒)@w
"

?&!

+ 𝜌"$%	 ⋅ 𝐼𝐸"$%?𝑞 + 1; (𝛟, 𝛒)@d 

= 𝑁 cxD𝜌?	 ⋅ 𝐷𝐸"$%?(𝑞 + 1, 𝑘); 𝛒@
"

?&!

y + 𝐼𝐸"$%?𝑞 + 1; (𝛟, 𝛒)@d						(S9) 

      Substituting the definition 𝛿"$%A (𝛟, 𝛒) = 𝑁 ⋅ ∑ 𝜌?	 ⋅ 𝐷𝐸"$%?(𝑞 + 1, 𝑘); 𝛒@
"
?&!  into the last line 

of equation (S9), we have: 

𝛿"$%G (𝛟, 𝛒) = 𝛿"$%A (𝛟, 𝛒) + 𝑁 ⋅ 𝐼𝐸"$%?𝑞 + 1; (𝛟, 𝛒)@ 

      Therefore, 𝛿"$%G (𝛟, 𝛒) ≥ 𝛿"$%A (𝛟, 𝛒) if and only if 𝐼𝐸"$%?𝑞 + 1; (𝛟, 𝛒)@ ≥ 0.  
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eAppendix 5. Unbiased estimator for the causal estimand in a one-stage randomized 

controlled trial 

Recall equation (S1): 𝛿"$%A (𝛟, 𝛒) = 𝑁 ⋅ ∑ 𝜌?	 ⋅ S𝑌C"$%(𝑞 + 1; 𝛒) − 𝑌C"$%(𝑘; 𝛒)T
"
?&! . To identify 

𝛿"$%A (𝛟, 𝛒), consider the following assumptions. 

Assumption 1. 𝛒 is a mixed assignment strategy. 

      Recall the definition of mixed assignment strategy in eAppendix 2: 𝛒 is a mixed individual 

assignment strategy if 𝐾# is fixed under 𝛒, with 0 < 𝐾# < 𝑁 for all 𝑥 ∈ {0,… , 𝑞 + 1} and each of 

the (!
∏ (,!!)
"#$
!%&

 possible individual assignments receiving equal probability.11,12  

Assumption 2 (consistency).26 

If 𝐗 = 𝐱, then 𝑌"$%,'(𝐱) = 𝑌"$%,' 

for all 𝑗.  

      To identify 𝛿"$%A (𝛟, 𝛒), we can make use of the following theorem. 

Theorem S2 (Unbiased estimator for the causal estimand in a one-stage RCT). Let 𝛒 = {𝑞 +

1, 𝑑; 𝜌!, … , 𝜌"}, where ∑ 𝜌#
"$%
#&! = 1, and 𝛟 = {𝑞 + 1, 𝑑; 𝟎} for 𝑞 ∈ ℕ and 𝑑 ∈ ℤ$. Let 

𝛿"$%|A(𝛟, 𝛒) = 	𝑁 ⋅D𝜌?	 ⋅ S𝑌}"$%(𝑞 + 1; 𝛒) − 𝑌}"$%(𝑘; 𝛒)T
"

?&!

						(S10) 

where 𝑌}"$%(𝑥; 𝛒) =
∑ ="#$,((𝐗)H[8(&#].
(%$

∑ H[8(&#].
(%$

 for 𝑥 ∈ {0,… , 𝑞 + 1}. That is, 𝑌}"$%(𝑥; 𝛒) is the average of 

observed outcomes for individuals assigned with 𝑥 under strategy 𝛒. Under Assumpstions 1 and 

2, 

𝐸 ~𝛿"$%|A(𝛟, 𝛒)� = 𝛿"$%A (𝛟, 𝛒). 

Proof: First, we expand LHS: 
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𝐸 ~𝛿"$%|A(𝛟, 𝛒)� = 𝐸 c	𝑁 ⋅D𝜌?	 ⋅ S𝑌}"$%(𝑞 + 1; 𝛒) − 𝑌}"$%(𝑘; 𝛒)T
"

?&!

d 

Linearity	of	expectation ⟶ 

= 	𝑁 ⋅DS𝜌?	 ⋅ ?𝐸S𝑌}"$%(𝑞 + 1; 𝛒)T − 𝐸S𝑌}"$%(𝑘; 𝛒)T@T
"

?&!

						(S11). 

      We largely repeat the proof in A.1 of Hudgens and Halloran11 to evaluate 𝐸S𝑌}"$%(𝑥; 𝛒)T for 

𝑥 ∈ {0,… , 𝑞 + 1}. Without loss of generality, let 𝑥 = 0.  

𝐸S𝑌}"$%(0; 𝛒)T = 𝐸 �
∑ 𝑌"$%,'(𝐗)𝐼S𝑋' = 0T(
'&%

∑ 𝐼S𝑋' = 0T(
'&%

� 

      Under Assumption 1, 𝐾! ≡ 𝑁 ⋅ 𝜌! is fixed by design, and under Assumption 2 (Consistency), 

we have: 

𝐸S𝑌}"$%(0; 𝛒)T =
1
𝐾!
D D Pr𝛒(𝐗 = 𝐬)𝑌"$%,'(𝐬)𝐼S𝑥' = 0T

𝐬∈𝒳(()

(

'&%

. 

      Any 𝐬 such that 𝑥' ≠ 0 does not contribute to the summation, so that we can write: 

𝐸S𝑌}"$%(0; 𝛒)T 

= %
,&
∑ ∑ Pr𝛒?𝐗0' = 𝛚,𝑋' = 0@	𝑌"$%,'?𝐱0' = 𝛚, 𝑥' = 0@𝛚∈𝒳((0%)
(
'&%   

= %
,&
∑ ∑ Pr𝛒?𝐗0' = 𝛚|𝑋' = 0@Pr𝛒?𝑋' = 0@𝑌"$%,'?𝐱0' = 𝛚, 𝑥' = 0@𝛚∈𝒳((0%)
(
'&% .  

      Under Assumption 1, Pr𝛒?𝑋' = 0@ = 𝜌! = 𝐾!/𝑁, implying 

𝐸S𝑌}"$%(0; 𝛒)T =
1
𝑁D D Pr𝛒?𝐗0' = 𝛚|𝑋' = 0@𝑌"$%,'?𝐱0' = 𝛚, 𝑥' = 0@

𝛚∈𝒳((0%)

(

'&%

 

Recall	𝑌'𝑞+1,𝑗
	 (0; 𝛒) ≡ * Pr𝛒+𝐗−𝑗 = 𝛚|𝑋𝑗 = 𝑥,𝑌𝑞+1,𝑗+𝐱−𝑗 = 𝛚,𝑥𝑗 = 0,

𝛚∈𝒳(𝑁−1)

⟶ 
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= %
(
∑ 𝑌C"$%,'(0; 𝛒)(
'&%   

Recall	𝑌C"$%(0; 𝛒) =
∑ 𝑌C"$%,'(0; 𝛒)(
'&%

𝑁 ⟶ 

= 𝑌C"$%(0; 𝛒).  

      Recall equation (S11): 

𝐸 ~𝛿"$%|A(𝛟, 𝛒)� = 𝑁 ⋅DS𝜌?	 ⋅ ?𝐸S𝑌}"$%(𝑞 + 1; 𝛒)T − 𝐸S𝑌}"$%(𝑘; 𝛒)T@T
"

?&!

 

Substituting	from	above ⟶ 

= 𝑁 ⋅D𝜌?S𝑌C"$%(𝑞 + 1; 𝛒) − 𝑌C"$%(𝑘; 𝛒)T
"

?&!

 

Recall	equation	(S1) ⟶ 

= 𝛿"$%A (𝛟, 𝛒)  



 20 

eAppendix 6. Extending the hazard difference estimator for vaccination at more than two 

time points 

1 Hazard difference estimator for quantifying directly averted outcomes 

The hazard difference estimator for strategy 𝛒 = {𝑞 + 1, 𝑑; 0, … , 𝑞} for 𝑞 ∈ ℕ can be defined as 

follows: 

𝛿"$%|A∗(𝛟, 𝛒) = DS𝑁�B0%S (𝛒) ⋅ ?ℎ}BT(𝛒) − ℎ}BS(𝛒)@T
"$%

B&%

 

where 𝑁�B0%S (𝛒) = 𝑁∑ 𝜌? v1 − 𝑌}B0%(𝑘; 𝛒)wB0%
?&! , ℎ}BT(𝛒) =

∑ D2E=U1(?;𝛒)
"#$
2%1

∑ D26%0=U1'$(?;𝛒):
"#$
2%1

, and ℎ}BS(𝛒) =

∑ D2E=U1(?;𝛒)
1'$
2%&

∑ D26%0=U1'$(?;𝛒):1'$
2%&

. 

2 Bias of hazard difference estimator relative to the causal estimand  

2.1 Analytical comparison 

2.1.1 Bias of hazard difference estimator for an arbitrary number of vaccination times 

To examine the bias of 𝛿"$%|A∗(𝛟, 𝛒) relative to 𝛿"$%A (𝛟, 𝛒), we first expand 𝐸[𝛿"$%|A∗(𝛟, 𝛒)] as 

follows: 

𝐸 ]𝛿!"#̂
$∗(𝛟, 𝛒)_ = 𝐸 ,*]𝑁̀&,#1 (𝛒) ⋅ >ℎa&2(𝛒) − ℎa&1(𝛒)?_

!"#

&'#

6 

 = 𝐸 b∑ b𝑁 ⋅ ∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?&,#
%'( ⋅ c ∑ 4!567"(%;𝛒)

#$%
!&"

∑ 4!<#,67"'%(%;𝛒)=
#$%
!&"

− ∑ 4!567"(%;𝛒)"'%
!&(

∑ 4!<#,67"'%(%;𝛒)="'%
!&(

de!"#
&'# e 

= 𝑁f𝐸 g*gh*𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
&,#

%'(

i ⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#
%'&

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#
%'&

−*𝜌%Δ𝑌a&(𝑘; 𝛒)
&,#

%'(

j
!"#

&'#

jk 

Linearity	of	expectation ⟶ 

= 𝑁f*𝐸 gh*𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
&,#

%'(

i ⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#
%'&

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#
%'&

j −**𝐸[𝜌%Δ𝑌a&(𝑘; 𝛒)]
&,#

%'(

!"#

&'#

!"#

&'#

k 

      By a proof parallel with that of Theorem S2, we have: 
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𝐸 ]𝛿!"#̂
$∗(𝛟, 𝛒)_ = 𝑁f*𝐸 gh*𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?

&,#

%'(

i ⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#
%'&

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#
%'&

j
!"#

&'#

−**𝜌%Δ𝑌/&(𝑘; 𝛒)
&,#

%'(

!"#

&'#

k 

Rearranging	terms ⟶ 

= 𝑁

⎩
⎪
⎨

⎪
⎧

*𝐸

⎣
⎢
⎢
⎢
⎢
⎡

7*𝜌%

&,#

%'(

9 ⋅

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?&,#
%'(

∑ 𝜌%&,#
%'(

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#
%'&

∑ 𝜌%
!"#
%'&

⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#
%'&

∑ 𝜌%
!"#
%'&

⎦
⎥
⎥
⎥
⎥
⎤

!"#

&'#

−**𝜌%Δ𝑌/&(𝑘; 𝛒)
&,#

%'(

!"#

&'#

⎭
⎪
⎬

⎪
⎫

								(S12)	 

      If 

∑ 425$'671'$(2;𝛒):
1'$
2%&

∑ 42
1'$
2%&

∑ 425$'671'$(2;𝛒):
"#$
2%1

∑ 42
"#$
2%1

= 1 (i.e., vaccination has no effect), then we can write equation (S12) as:  

𝐸 ]𝛿!"#̂
$∗(𝛟, 𝛒)_ = 𝑁�*𝐸 ,7*𝜌%

&,#

%'(

9 ⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#
%'&

∑ 𝜌%
!"#
%'&

6
!"#

&'#

−**𝜌%Δ𝑌/&(𝑘; 𝛒)
&,#

%'(

!"#

&'#

� 

      By a proof parallel with that of Theorem S2, we have: 

𝐸 ]𝛿!"#̂
$∗(𝛟, 𝛒)_ = 𝑁�*7*𝜌%

&,#

%'(

9 ⋅
∑ 𝜌%Δ𝑌/&(𝑘; 𝛒)
!"#
%'&

∑ 𝜌%
!"#
%'&

!"#

&'#

−**𝜌%Δ𝑌/&(𝑘; 𝛒)
&,#

%'(

!"#

&'#

� 

Recall	equation[S4] ⟶ 

= 𝛿!"#$ (𝛟, 𝛒). 

        However, if 

∑ 425$'671'$(2;𝛒):
1'$
2%&

∑ 42
1'$
2%&

∑ 425$'671'$(2;𝛒):
"#$
2%1

∑ 42
"#$
2%1

≠ 1 , then 𝐸 ~𝛿"$%|A∗(𝛟, 𝛒)� ≠ 𝛿"$%A (𝛟, 𝛒) . That is, 

𝛿"$%|A∗(𝛟, 𝛒) is a biased estimator if the survival among vaccinated individuals is different from 

that among unvaccinated individuals. In an ideal RCT, the differential survival is due to a non-null 

effect of vaccination.  

2.1.2 An example: vaccination at two time points  

From equation (S12), we have: 

𝐸 ]𝛿)�
$∗(𝛟, 𝛒)_ = 𝐸 ]𝑁̀(1(𝛒) >ℎa#2(𝛒) − ℎa#1(𝛒)? + 𝑁̀#1(𝛒) >ℎa)2(𝛒) − ℎa)1(𝛒)?_ 
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= 𝑁

⎩
⎪
⎨

⎪
⎧

*𝐸

⎣
⎢
⎢
⎢
⎢
⎡

7*𝜌%

&,#

%'(

9 ⋅

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?&,#
%'(

∑ 𝜌%&,#
%'(

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?)
%'&

∑ 𝜌%)
%'&

⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒))
%'&

∑ 𝜌%)
%'&

⎦
⎥
⎥
⎥
⎥
⎤

)

&'#

−**𝜌%Δ𝑌/&(𝑘; 𝛒)
&,#

%'(

)

&'#

⎭
⎪
⎬

⎪
⎫

 

= 𝑁

⎩
⎪
⎨

⎪
⎧

𝐸

⎣
⎢
⎢
⎢
⎡

𝜌( ⋅

𝜌( >1 − 𝑌a((0; 𝛒)?
𝜌(

𝜌# >1 − 𝑌a((1; 𝛒)? + 𝜌) >1 − 𝑌a((2; 𝛒)?
𝜌# + 𝜌)

⋅
𝜌#Δ𝑌a#(1; 𝛒) + 𝜌)Δ𝑌a#(2; 𝛒)

𝜌# + 𝜌)
⎦
⎥
⎥
⎥
⎤

+ 𝐸

⎣
⎢
⎢
⎢
⎡

(𝜌( + 𝜌#) ⋅

𝜌( >1 − 𝑌a#(0; 𝛒)? + 𝜌# >1 − 𝑌a#(1; 𝛒)?
𝜌( + 𝜌#

𝜌) >1 − 𝑌a((2; 𝛒)?
𝜌)

⋅
𝜌)Δ𝑌a)(2; 𝛒)

𝜌)
⎦
⎥
⎥
⎥
⎤

− K𝜌(Δ𝑌/#(0; 𝛒) + @𝜌(Δ𝑌/)(0; 𝛒) + 𝜌#Δ𝑌/)(1; 𝛒)AL

⎭
⎪
⎬

⎪
⎫

 

since	𝑌a( ≡ 0	 ⟶ 

= 𝑁�𝐸 O𝜌( ⋅
𝜌#Δ𝑌a#(1; 𝛒) + 𝜌)Δ𝑌a#(2; 𝛒)

𝜌# + 𝜌)
P + 𝐸 ,(𝜌( + 𝜌#) ⋅

𝜌( >1 − 𝑌a#(0; 𝛒)? + 𝜌# >1 − 𝑌a#(1; 𝛒)?

(𝜌( + 𝜌#) >1 − 𝑌a#(2; 𝛒)?
⋅ Δ𝑌a)(2; 𝛒)6

− K𝜌(Δ𝑌/#(0; 𝛒) + @𝜌(Δ𝑌/)(0; 𝛒) + 𝜌#Δ𝑌/)(1; 𝛒)AL� 

      By a proof parallel with that of Theorem S2, we have: 

= 𝑁�𝜌( ⋅
𝜌#Δ𝑌/#(1; 𝛒) + 𝜌)Δ𝑌/#(2; 𝛒)

𝜌# + 𝜌)
+ 𝐸 ,(𝜌( + 𝜌#) ⋅

𝜌( >1 − 𝑌a#(0; 𝛒)? + 𝜌# >1 − 𝑌a#(1; 𝛒)?

(𝜌( + 𝜌#) >1 − 𝑌a#(2; 𝛒)?
⋅ Δ𝑌a)(2; 𝛒)6

− K𝜌(Δ𝑌/#(0; 𝛒) + @𝜌(Δ𝑌/)(0; 𝛒) + 𝜌#Δ𝑌/)(1; 𝛒)AL� 

rearranging	terms → 

= 𝑁�𝜌( ⋅ Y
𝜌#Δ𝑌/#(1; 𝛒) + 𝜌)Δ𝑌/#(2; 𝛒)

𝜌# + 𝜌)
− Δ𝑌/#(0; 𝛒)Z + 𝐸 ,(𝜌( + 𝜌#) ⋅

𝜌( >1 − 𝑌a#(0; 𝛒)? + 𝜌# >1 − 𝑌a#(1; 𝛒)?

(𝜌( + 𝜌#) >1 − 𝑌a#(2; 𝛒)?
⋅ Δ𝑌a)(2; 𝛒)6

− @𝜌(Δ𝑌/)(0; 𝛒) + 𝜌#Δ𝑌/)(1; 𝛒)A�						(S13) 
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      From the preceding section, we conclude that 𝐸 ~𝛿C�
A∗(𝛟, 𝛒)� ≠ 𝛿CA(𝛟, 𝛒)  if 

4(<#,67%((;𝛒)="4%<#,67%(#;𝛒)=
(4("4%)<#,67%();𝛒)=

≠ 1 (i.e., vaccination has a non-null effect). 

2.2 Simulations 

Here we consider strategy 𝛒′′ = {99,7; 𝟎. 𝟎𝟏}, where 1% of the individuals are randomized to 

vaccination at 𝑥 ∈ {0,1, … ,98}, or to no vaccination throughout (i.e., 𝑥 = 99). To illustrate the 

bias of hazard difference estimator relative to the causal estimand, we simulate the epidemic under 

the same nine scenarios as described in Table 1. Compartments are stratified by 𝑥 ∈ {0,1, … ,99}, 

such that within each stratum 𝑥, we specify a continuous-time SIRD model in term of continuous 

time 𝑡 as follows:  

𝑑𝑆#(𝑡)
𝑑𝑡 = −𝜃#(𝑡) ⋅ 𝜆(𝑡) ⋅ 𝑆#(𝑡)

𝑑𝐼#(𝑡)
𝑑𝑡 = 𝜃#(𝑡) ⋅ 𝜆(𝑡) ⋅ 𝑆#(𝑡) − 𝛾 ⋅ 𝐼#(𝑡)

𝑑𝑅#(𝑡)
𝑑𝑡 = (1 − 𝜅#(𝑡) ⋅ 𝜇) ⋅ 𝛾 ⋅ 𝐼#(𝑡)

𝑑𝐷#(𝑡)
𝑑𝑡 = 𝜅#(𝑡) ⋅ 𝜇 ⋅ 𝛾 ⋅ 𝐼#(𝑡) ⎭

⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

(S14) 

where 𝜆(𝑡) = 𝛽 ⋅ ∑ H!(V)
"#$
!%&
((V)

 and 𝑁(𝑡) = the sum of all individuals alive at 𝑡. For simulation, the 

model was discretized to day time-steps from Day 0 (i.e., the beginning of interval 0) to Day 693 

(i.e., the beginning of interval 99). All model parameters are the same as Table S4, except that we 

use time-varying parameter 𝜃#(𝑡) to parameterize 1-VEinf / 100%: 

𝜃#(𝑡) = ¡1					if	𝑡 < beginning	of	interval	𝑥
𝜃					if	𝑡 ≥ beginning	of	interval	𝑥 

for vaccination interval 𝑥 and time 𝑡, where 𝜃#(⋅) can be 10% or 0%, depending on the scenario 

as outlined in Table 1. Similarly, we use time-varying parameter 𝜅#(𝑡) to parameterize 1-VEdeath 

/ 100%: 
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𝜅#(𝑡) = ¡1					if	𝑡 < beginning	of	interval	𝑥
𝜅					if	𝑡 ≥ beginning	of	interval	𝑥 

for vaccination interval 𝑥 and time 𝑡, where 𝜅#(⋅) can be 10% or 0%, depending on the scenario 

as outlined in Table 1.  

      Initial values for the simulation are described in Table S2.  

TABLE S2 | Initial values of the simulations under strategy 𝛒′′ = {99,7; 𝟎. 𝟎𝟏}.  

Variable Initial condition(s) Definition 

𝑵(𝟎) 300,000 Number alive at baseline 

𝑺𝒙(𝟎) (300,000 − 300) ∗ 0.01 Number of susceptible individuals assigned to 
receive vaccination at the beginning of interval 𝑥 

𝑰𝒙(𝟎) 300 ∗ 0.01 Number of infectious individuals assigned to 
receive vaccination at the beginning of interval 𝑥 

𝑹𝒙(𝟎) 0 Number of recovered individuals assigned to 
receive vaccination at the beginning of interval 𝑥 

𝑫𝒙(𝟎) 0 Number of individuals assigned to receive 
vaccination at the beginning of interval 𝑥  who 
died due to infection 

 

      Figure S2 compares the expected value of hazard difference estimator and the causal estimand 

for directly averted infections and deaths under strategy 𝛒′′ = {99,7; 𝟎. 𝟎𝟏} before the beginning 

of Day 693, while Table S3 shows the absolute and percentage biases. Consistent with the 

derivation above, the hazard difference estimator overestimates averted outcomes when VEinf > 0, 

due to the lower survival of not-yet-vaccinated individuals compared to ever-vaccinated 

individuals (i.e., 

∑ 42
))5$'671'$;2;𝛒

))<:1'$
2%&

∑ 42
))1'$

2%&
∑ 42

))5$'671'$;2;𝛒))<:
"#$
2%1

∑ 42
))"#$

2%1

 > 1 in equation [S12]).
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eAppendix 7. An alternative estimator for quantifying directly averted outcomes using 

RCT data aggregated by vaccination status 

Here, we show that, for averted outcomes, the causal estimand can be identified with an alternative 

unbiased estimator using data aggregated by vaccination status through an expression similar (but 

not identical) to that of the hazard difference estimator. While this estimator may appear 

unnecessary for RCTs, where data are disaggregated by vaccination time and equation (S10) can 

be directly applied, it has important implications for empirical analyses that rely on aggregated 

data from national vaccine systems, as discussed further in eAppendix 13. 

Theorem S3 (Unbiasedness of an alternative estimator for averted outcomes). Let 𝛒 = {𝑞 +

1, 𝑑; 𝜌!, … , 𝜌"}, where ∑ 𝜌#
"$%
#&! = 1, and 𝛟 = {𝑞 + 1, 𝑑; 𝟎} for 𝑞 ∈ ℕ and 𝑑 ∈ ℤ$. Let  

𝛿"$%|AF(𝛟, 𝛒) = D§
∑ 𝜌?B0%
?&!

∑ 𝜌?
"$%
?&B

𝑁�B0%T (𝛒)ℎ}BT(𝛒) − 𝑁�B0%S (𝛒)ℎ}BS(𝛒)¨
"$%

B&%

.							(S15) 

where𝑁�B0%T (𝛒) = 𝑁∑ 𝜌? v1 − 𝑌}B0%(𝑘; 𝛒)w
"$%
?&B , 𝑁�B0%S (𝛒) = 𝑁∑ 𝜌? v1 − 𝑌}B0%(𝑘; 𝛒)wB0%

?&! , ℎ}BT(𝛒) =

∑ D2E=U1(?;𝛒)
"#$
2%1

∑ D26%0=U1'$(?;𝛒):
"#$
2%1

, and ℎ}BS(𝛒) =
∑ D2E=U1(?;𝛒)
1'$
2%&

∑ D26%0=U1'$(?;𝛒):1'$
2%&

. 

      Under Assumptions 1 and 2 from eAppendix 5, 𝐸 ~𝛿"$%|AF(𝛟, 𝛒)� = 𝛿"$%A (𝛟, 𝛒). 

Proof:  

𝐸[𝛿!"#̂
$)(𝛟, 𝛒)] = 𝐸 ,*7

∑ 𝜌%&,#
%'(

∑ 𝜌%
!"#
%'&

𝑁̀&,#2 (𝛒)ℎa&2(𝛒) − 𝑁̀&,#1 (𝛒)ℎa&1(𝛒)9
!"#

&'#

6 

Substituting	𝑁̀&,#2 (𝛒), ℎa&2(𝛒), 𝑁̀&,#1 (𝛒), and	ℎa&1(𝛒)	from	above ⟶	 

=*𝐸 ,7𝑁 ⋅
∑ 𝜌%&,#
%'(

∑ 𝜌%
!"#
%'&

⋅*𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#

%'&

⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#
%'&

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#
%'&

−𝑁 ⋅*𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
&,#

%'(

!"#

&'#

⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)&,#
%'(

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?&,#
%'(

96 
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= 𝑁*7𝐸 ,
∑ 𝜌%&,#
%'(

∑ 𝜌%
!"#
%'&

⋅*𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#

%'&

6 − 𝐸 h*𝜌%Δ𝑌a&(𝑘; 𝛒)
&,#

%'(

i9
!"#

&'#

. 

By a proof parallel with that of Theorem S2, we have: 

𝐸[𝛿!"#̂
$)(𝛟, 𝛒)] = 𝑁*7

∑ 𝜌%&,#
%'(

∑ 𝜌%
!"#
%'&

⋅*𝜌%Δ𝑌/&(𝑘; 𝛒)
!"#

%'&

−*𝜌%Δ𝑌/&(𝑘; 𝛒)
&,#

%'(

9
!"#

&'#

 

Recall	equation	[S4] ⟶ 

= 𝛿!"#$ (𝛟, 𝛒) 

      Note that under the null, ∑ D2
1'$
2%&

∑ D2
"#$
2%1

𝑁�B0%T (𝛒) = 𝑁�B0%S (𝛒) and equation (S15) can be written as 

∑ ~𝑁�B0%S (𝛒) vℎ}BT(𝛒) − ℎ}BS(𝛒)w�
"$%
B&% , which reduces to the hazard difference estimator in eAppendix 

6. Therefore, the same type of aggregated data required by the hazard difference estimator can be 

used by an unbiased estimator to quantify directly averted outcomes. However, when using 

aggregated data to identify the causal estimand in observational studies, we recognize that further 

procedures are needed to estimate 𝜌#  for 𝑥 ∈ {0,… , 𝑞 + 1}  because there are no random 

assignments of 𝐗. We will further explore this in eAppendix 13. 
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eAppendix 8. Parameters for simulations in the main text 

TABLE S4 | List of parameters for simulations 

Parameter Value Definition 
𝜷 0.25 The number of effective contacts made by a typical 

infectious individual per day 
𝝁 varied Infection-fatality rate 
𝜽 varied 1 – vaccine efficacy against infection (i.e., VE inf / 

100%) 
𝜽𝟏(𝒕) 1 if 𝑡 < 60 days 

𝜃 if 𝑡 ≥ 60 days 
Same as above 

𝜿 varied 1 – vaccine efficacy against death given infection 
(i.e., VE death /100%) 

𝜿𝟏(𝒕) 1 if 𝑡 < 60 days 
𝜅 if 𝑡 ≥ 60 days 

Same as above 

𝜸 0.07 Recovery rate per day 
 

TABLE S5 | List of initial conditions in the group under strategy 𝛒′ = {2,60; 0.2,0.3}   

Variable Initial condition(s) Definition 

𝑵(𝟎) 300,000 Number alive at baseline 

𝑺𝟐(𝟎) (300,000 − 300) ∗ (1 − 0.2 − 0.3) Number of susceptible individuals randomized to 
receive no vaccination  

𝑺𝟏(𝟎) (300,000 − 300) ∗ 0.3 Number of susceptible individuals randomized to 
receive on Day 60  

𝑺𝟎(𝟎) (300,000 − 300) ∗ 0.2 Number of susceptible individuals randomized to 
receive vaccination at baseline 

𝑰𝟐(𝟎) 300 ∗ (1 − 0.2 − 0.3) Number of infectious individuals randomized to 
receive no vaccination  

𝑰𝟏(𝟎) 300 ∗ 0.3 Number of infectious individuals randomized to 
receive vaccination on Day 60  

𝑰𝟎(𝟎) 300 ∗ 0.2 Number of infectious individuals randomized to 
receive vaccination at baseline 

𝑹𝟐(𝟎) 0 Number of recovered individuals randomized to 
receive no vaccination 

𝑹𝟏(𝟎) 0 Number of recovered individuals randomized to 
receive vaccination on Day 60 
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𝑹𝟎(𝟎) 0 Number of recovered individuals randomized to 
receive vaccination at baseline 

𝑫𝟐(𝟎) 0 Number of individuals randomized to receive no 
vaccination who died due to infection  

𝑫𝟏(𝟎) 0 Number of individuals randomized to receive 
vaccination on Day 60 who died due to infection 

𝑫𝟎(𝟎) 0 Number of individuals randomized to receive 
vaccination at baseline who died due to infection 
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eAppendix 11. Scenarios for simulations by varying the number of effective contacts  

In Figure 2B, we varied IFR and showed that 𝛿C�
A∗(𝛟, 𝛒′) substantially overestimates averted 

deaths when IFR = 100%, due to the stark difference in relative survival between vaccinated and 

not-yet-vaccinated individuals. However, when IFR ≤ 10%, the overestimation is trivial due to the 

similar survival across groups. Here, instead of varying IFR, we vary the number of effective 

contacts (𝛽) to explore the bias. Scenarios are specified in Table S7. All other parameters match 

the main analysis (Table S4), except for infection-fatality rate 𝜇, fixed at 0.1. Initial values also 

match the main analysis (Table S5). 

TABLE S7 | Scenarios varied by number of effective contacts (𝛽), vaccine efficacy against 
infection (VEinf) and vaccine efficacy against death given infection (VEdeath)  

Scenario 𝛽 Vaccine efficacy 
Scenario I 0.15 VE inf = 90%; VE death = 0% 
Scenario II 0.2 VE inf = 90%; VE death = 0% 
Scenario III 0.25 VE inf = 90%; VE death = 0% 
Scenario IV 0.15 VE inf = 0%; VE death = 90% 
Scenario V 0.2 VE inf = 0%; VE death = 90% 
Scenario VI 0.25 VE inf = 0%; VE death = 90% 
Scenario VII 0.15 VE inf = 90%; VE death = 90% 
Scenario VIII 0.2 VE inf = 90%; VE death = 90% 
Scenario IX 0.25 VE inf = 90%; VE death = 90% 

 

      Figure S4 compares the expected value of hazard difference estimator with the causal estimand 

for averted infections and deaths in Scenarios as specified in Table S7, while Table S8 shows the 

absolute and percentage bias. As shown in Figure S4 and Table S8, the hazard difference 

estimator overestimates averted infections in all Scenarios (except for averted infections when 

VEinf = 0%; Scenarios IV to VI), and the bias increases with 𝛽. This is because susceptibles (from 

infections) are preferentially depleted among unvaccinated individuals at a faster rate when 𝛽 is 

higher and VEinf = 90%.
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eAppendix 12. Simulations with more realistic parameter values 

In the main text, we considered extreme combinations of IFR, VEinf, and VEdeath for illustrative 

purposes. Here, we consider more realistic parameter values estimated by previous studies on 

seasonal flu, measles, and COVID-19 (wild-type strain), as shown in Table S9. As in the main 

text, we simulate strategy 𝛒F = {2,60; 0.2,0.3}, using the same model structure as in equation (8). 

Our objective is not to realistically model the dynamics of these epidemics—which would involve 

population heterogeneity, more complex infection characteristics (i.e., breakthrough infections, re-

infections), waning immunity, vaccination at more time steps, and parameters that vary by time 

and context. Instead, we simply aim to test the robustness of our results across a broader and more 

realistic range of parameter values compared to those parameters used in the main text (as 

presented in Table S4).   

TABLE S9 | More realistic parameter values for seasonal flu, measles, and COVID-19 (wildtype). 
Definitions for the parameters are provided in Table S4. Model equation is shown in equation (8). 

Parameter Seasonal flu Measles COVID-19 
𝜷a 0.41 15 1.26 16 0.15 17 
𝝁 3% 18 1.3% 19 0.11% 20 
𝜽 0.66 21 0.05 22 0.05 23 
𝜿 0.69 24 0 25 0.04 26 
𝜸 0.21 15 0.07 27 0.07 28 

a 𝛽 is obtained from applying the formula 𝛽 = 𝑅! ⋅ 𝛾, where 𝑅! =basic reproduction number. 

      As Figure S5 and Table S10 shows, the hazard difference estimator substantially 

overestimates averted infections for measles due to high basic reproduction number (𝑅!=18) and 

high VEinf. It also slightly overestimates averted infections for seasonal flu and COVID-19 (wild-

type), given a low 𝑅! (i.e., 𝑅! ≤2.2) and VEinf > 0. The overestimation of averted deaths is trivial 

due to the low IFR (≤ 3% for all pathogens). 

      For avertible outcomes (defined in eAppendix 14), the hazard difference estimator slightly 

underestimates avertible deaths for COVID-19. As shown later, this occurs because the hazard 
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difference estimator neglects the term 𝜌%		 ⋅ [Δ𝑌CC(1; 𝛒) − Δ𝑌CC(0; 𝛒)]  in the causal estimand 

(equation [S20]). This term is positive for COVID-19 (i.e., the period incidence of death for 

individuals with 𝑥 = 1 is higher than that for individuals with 𝑥 = 0), such that hazard difference 

estimator underestimates the causal estimand. For measles, there is no bias for avertible deaths 

under the hazard difference estimator because Δ𝑌CC(0; 𝛒) = Δ𝑌CC(1; 𝛒) = 0 (See equation [S20] and 

compare it with equation [S24]).
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eAppendix 13. Using observational data aggregated by vaccination status for estimation 

eAppendix 7 defines an alternative unbiased estimator (equation [S15]) using RCT data 

aggregated by vaccination status. However, such an RCT is often not feasible in reality, and here 

we show how to identify the causal estimand using observational data aggregated by vaccination 

status (i.e., similar data structure as the national vaccine system29).  

1 Obtaining 𝝆±𝒙	  using observational data  

In the proposed RCT, we specify the strategy 𝛒 and the proportions ²𝜌!, … , 𝜌"$%³ by design. In an 

observational study, the investigators make no assignments, rather we only observe the time at 

which individuals are vaccinated (denoted as 𝐗∗ ). In this case, the proportions 𝜌#	  for 𝑥 ∈

{0,… , 𝑞 + 1}, must be estimated from the data. However, we cannot assume 𝜌#	 = 𝐸 �
∑ H[8(

∗&#∗\.
(%$

(
� 

for 𝑥∗ ∈ {0,… , 𝑞 + 1} due to immortal time bias (i.e., since individuals who die before interval 1 

cannot receive vaccination, individuals with 𝑥∗ = 1 are by definition “immortal” before interval 

1).30 Here, we discuss the procedures to estimate 𝜌#	  for 𝑥 ∈ {0,… , 𝑞 + 1}, addressing the immortal 

time bias. Note we assume the absence of confounding and additional selection bias at baseline 

and throughout follow-up. These assumptions are implausible in observational studies, but 

addressing all their violations is beyond the scope of this paper. Instead, this section focuses on 

identifying the causal estimand using observational data aggregated by vaccination status, 

addressing the immortal time bias that would otherwise exist even in the absence of confounding 

or additional selection bias.  

      Without loss of generality, consider discrete-time outcome Y for death. The SIRD-model in 

equation (S14) can be simplified into the following equation for discrete-time outcome Y: 

𝑁B$%S (𝛒) = 𝑁BS(𝛒) ⋅ ?1 − ℎB$%S (𝛒)@ + 𝑁 ⋅ 𝜌B$% ⋅µ?1 − ℎ?T(𝛒)@
B$%

?&!

						(S16) 
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where 𝑁BS(𝛒) = 𝑁∑ 𝜌??1 − 𝑌CB(𝑘; 𝛒)@B
?&!  is the number survived among vaccinated individuals 

by interval 𝑙, and ℎB$%S (𝛒) = ∑ D2E=>1#$(?;𝛒)
1
2%&

∑ D26%0=>1(?;𝛒):1
2%&

 (or ℎB$%T (𝛒) =
∑ D2E=>1#$(?;𝛒)
"#$
2%1#$

∑ D26%0=>1(?;𝛒):
"#$
2%1#$

) is the hazard from 

interval 𝑙 to 𝑙 + 1 among vaccinated (or unvaccinated) individuals.  

      Therefore, 𝜌B$% can be estimated by: 

𝜌¶B$% =
𝑁�B$%S (𝛒) − 𝑁�BS(𝛒) ⋅ v1 − ℎ}𝑙+1

𝑣 (𝛒)w

𝑁 ⋅ ∏ v1 − ℎ}𝑘
𝑢(𝛒)wB$%

?&!

.						(S17) 

      To illustrate this, Table S11 shows a simulated dataset that is aggregated by vaccination status 

in a hypothetical observational study in the absence of confounding or additional selection bias. 

The epidemic is simulated under the (unobserved) strategy 𝛒F = {2, 𝑑; 0.2,0.3} in Scenario 1 as 

described in Table 1.  

TABLE S11 | Dataset aggregated by vaccination status in a hypothetical observational study 
without confounding under unobserved strategy 𝛒F = {2,60; 0.2,0.3} 

Interval 
(𝒌) 

Observed number 
survived among 

vaccinated 
individuals 
(𝑵�𝒌𝒗(𝛒F)) a 

Hazards of death 
among vaccinated 

individuals 
(𝒉�𝒌$𝟏𝒗 (𝛒F)) b 

Observed number 
survived among 

not-yet-vaccinated 
individuals 
(𝑵�𝒌𝒖(𝛒F)) a 

Hazards of death 
among not-yet-

vaccinated 
individuals 
(𝒉�𝒌$𝟏𝒖 (𝛒F)) b 

0 60000 0.00060716 240000 0.00426391 
1 149579.818 0.0026133 149360.413 0.00491036 

a Number of individuals survived before the start of interval 𝑘 among those who are (un)vaccinated 
at the start of the that interval. 
b Hazard for events occurring after the start of interval 𝑘 and before the start of interval 𝑘 + 1 (i.e., 
hazard leads survival by one interval). 
 

       Assuming that we know the baseline vaccination proportion 𝜌!F = 0.2, we are interested in 

recovering 𝜌%F  and 𝜌CF . By substituting the data from Table S11 into equation (S17), we have: 

𝜌�#> =
𝑁̀#1(𝛒′) − 𝑁̀(1(𝛒′) ⋅ >1 − ℎa#1(𝛒′)?

𝑁̀ ⋅ >1 − ℎa(2(𝛒′)? ⋅ >1 − ℎa#2(𝛒′)?
=
149579.818 − 60000 ⋅ (1 − 0.00060716)

300000 ⋅ 1 ⋅ (1 − 0.00426391) = 0.3 = 𝜌′# 

      Then, we can easily obtain 𝜌¶CF = 1 − 0.2 − 0.3 = 0.5. 
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3 Identifying causal estimand using observational data 

Lastly, we verify that, the causal estimand can be identified using observational data aggregated 

by vaccination status (subject to immortal time bias until corrected by equation [S17]) in the 

absence of confounding or additional selection bias. By having 𝛒F = 𝛒±′ and substituting the data 

from Table S11 into equation (S15), we have: 

𝛿!"#̂
$>(𝛟, 𝛒′) =*7

∑ 𝜌�%>&,#
%'(

∑ 𝜌�%>
!"#
%'&

𝑁̀&,#2 (𝛒>)ℎa&2(𝛒>) − 𝑁̀&,#1 (𝛒>)ℎa&1(𝛒>)9
)

&'#

 

= O
𝜌�′(

𝜌�′# + 𝜌�′)
𝑁̀(2(𝛒>)ℎa#2(𝛒>) − 𝑁̀(1(𝛒>)ℎa#1(𝛒>)P + O

𝜌�′( + 𝜌�′#
𝜌�′)

𝑁̀#2(𝛒>)ℎa)2(𝛒>) − 𝑁̀#1(𝛒>)ℎa)1(𝛒>)P 

= (
0.2
0.8 ∗ 240000 ∗ 0.00426391 − 60000.0 ∗ 0.00060716) + (

0.5
0.5 ∗ 149360.413 ∗ 0.00491036 − 149579.818 ∗ 0.0026133) 

= 561.92146 

      Consider the simulated data from a hypothetical RCT where we have cumulative incidence 

data disaggregated by vaccination time (Table S12). By substituting the RCT data into equation 

(S10) (i.e., the unbiased estimator), we estimate the averted deaths to be 300000 ∗

[0.2 ∗ (0.00915333 − 0.00220958) + 0.3 ∗ (0.00915333 − 0.00753893)] = 561.921, which 

is the same as the result obtained from Table S11. Therefore, in the absence of confounding or 

additional selection bias, we can use observational data aggregated by vaccination status to 

estimate cumulative incidence difference estimand for averted outcomes. 

TABLE S12 | Dataset disaggregated by vaccination time in a hypothetical one-stage RCT under 
strategy 𝛒′ = {2,60; 0.2,0.3} 

Vaccination time (𝑥) 𝛒′𝒙	  Cumulative incidence for death 
𝑌}C(𝑥; 𝛒′) 

0 0.2 0.00220958 
1 0.3 0.00753893 
2 0.5 0.00915333 
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eAppendix 14. Outcomes directly avertible by vaccination 

In the main text, we define the causal estimand and estimators for quantifying outcomes directly 

averted by vaccination. Here, we propose the causal estimand and estimators for outcomes directly 

avertible by vaccination. The proposed causal estimand considers outcomes that could have been 

averted under full vaccination at baseline (denoted as 𝛙 = (𝑞 + 1, 𝑑; 1, 𝟎) for 𝑞 ∈ ℕ), but were 

not averted given the particular vaccination strategy 𝛒.  

1.1 Causal estimand for outcomes directly avertible by vaccination at a single time point  

Our previous framework14 defined the causal estimand for quantifying avertible outcomes for 

vaccination at a single time point—that is, outcomes that could have been directly averted under 

full vaccination at baseline 𝛙 = {1, 𝑑; 1} but were not averted given the particular strategy 𝛒 =

{1, 𝑑; 𝜌!	 }, where 𝜌% = 1 − 𝜌!. In notation, the estimand is: 

𝛿%A(𝛙, 𝛒) = 𝑁 ⋅ 𝜌% ⋅ ?𝑌C%(1; 𝛒) − 𝑌C%(0; 𝛒)@						(S18) 

1.2 Causal estimand for outcomes directly avertible by vaccination at two time points  

Now, extending the estimand in equation (S18) for vaccination at two time points, we define the 

estimand to quantify outcomes that could have been directly averted under full vaccination at 

baseline 𝛙 = {2, 𝑑; 1,0} but were not averted given the particular strategy 𝛒 = {2, 𝑑; 𝜌!	 , 𝜌%}. In 

notation, the estimand is: 

𝛿CA(𝛙, 𝛒) = 𝑁 ⋅ S𝜌%		?𝑌CC(1; 𝛒) − 𝑌CC(0; 𝛒)@ + 𝜌C	 ?𝑌CC(2; 𝛒) − 𝑌CC(0; 𝛒)@T						(S19) 

= 𝑁 ⋅ S?𝜌%	 Δ𝑌C%(1; 𝛒) + 𝜌C	 Δ𝑌C%(2; 𝛒)@ − (𝜌%	 + 𝜌C) ⋅ Δ𝑌C%(0; 𝛒) + 𝜌%		 ⋅ ?Δ𝑌CC(1; 𝛒) − Δ𝑌CC(0; 𝛒)@ 	

+ 𝜌C		 ⋅ ?Δ𝑌CC(2; 𝛒) − Δ𝑌CC(0; 𝛒)@T.						(S20) 

      In words, equation (S19) takes the difference in cumulative incidence between vaccination at 

baseline (i.e., 𝑌CC(0; 𝛒) ) and vaccination at later time 𝑥 ∈ {1,2}  (i.e., 𝑌CC(1; 𝛒)  or 𝑌CC(2; 𝛒) ), 
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multiplied with number of individuals assigned to 𝑥=1 or 2 (i.e., 𝑁 ⋅ 𝜌% or 𝑁 ⋅ 𝜌C), respectively, 

and sum over 𝑥 ∈ {1,2}. 

1.3 Outcomes directly avertible by vaccination at an arbitrary number of vaccination times  

Extending the estimand in equation (S19) for vaccination at an arbitrary number of vaccination 

times, we define the estimand to quantify outcomes that could have been directly averted under 

full vaccination at baseline 𝛙 = {𝑞 + 1, 𝑑; 1, 𝟎} but were not averted given the particular strategy 

𝛒 = {𝑞 + 1, 𝑑; 𝜌!	 , … , 𝜌"} for 𝑞 ∈ ℕ. In notation, the estimand is: 

𝛿"$%A (𝛙, 𝛒) = 𝑁 ⋅D𝜌?	 ⋅ v𝑌C"$%(𝑘; 𝛒) − 𝑌C"$%(0; 𝛒)w .
"$%

?&%

						(S21)	

2 Unbiased estimator 

Similar to the unbiased estimator for directly averted outcomes in equation (S10), directly avertible 

outcomes (i.e., 𝛿"$%A (𝛙, 𝛒)) can be identified by: 

𝛿"$%|A(𝛙, 𝛒) = 	𝑁 ⋅D𝜌?	 ⋅ S𝑌}"$%(𝑘; 𝛒) − 𝑌}"$%(0; 𝛒)T
"$%

?&%

						(S22) 

where 𝑌}"$%(𝑥; 𝛒) =
∑ ="#$,((𝐗)H[8(&#].
(%$

∑ H[8(&#].
(%$

 for 𝑥 ∈ {0,… , 𝑞 + 1} . We know that 𝛿"$%|A(𝛙, 𝛒)  is 

unbiased based on a proof parallel with the proof of Theorem S2. 

3 Hazard difference estimator for outcomes directly avertible by vaccination 

Some empirical studies31,32 have used the hazard difference estimator to estimate vaccine-avertible 

outcomes, which takes the form:   

𝛿"$%|A∗(𝛙, 𝛒) = D~𝑁�B0%T (𝛒) ⋅ vℎ}BT(𝛒) − ℎ}BS(𝛒)w�
"$%

B&%

 

= 𝑁�!T(𝛒) ⋅ vℎ}%T(𝛒) − ℎ}%S(𝛒)w +D~𝑁�B0%T (𝛒) ⋅ vℎ}BT(𝛒) − ℎ}BS(𝛒)w�
"$%

B&C

						(S23) 
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where 𝑁�B0%T (𝛒) = 𝑁∑ 𝜌? v1 − 𝑌}B0%(𝑘; 𝛒)w
"$%
?&B , ℎ}BT(𝛒) =

∑ D2E=U1(?;𝛒)
"#$
2%1

∑ D26%0=U1'$(?;𝛒):
"#$
2%1

, and ℎ}BS(𝛒) =

∑ D2E=U1(?;𝛒)
1'$
2%&

∑ D26%0=U1'$(?;𝛒):1'$
2%&

. In words, the hazard difference estimator quantifies directly avertible outcomes 

by multiplying the hazard difference ℎ}BT(𝛒) − ℎ}BS(𝛒)  by the number survived among not-yet-

vaccinated individuals 𝑁�B0%T (𝛒).  

4 Bias of the hazard difference estimator relative to the causal estimand for vaccination at 

two time points 

4.1 Analytic comparison 

Consider vaccination at two time points. The hazard difference estimator for quantifying outcomes 

that could have been directly averted under full vaccination at baseline 𝛙 = {2, 𝑑; 1,0} but were 

not averted given the particular strategy 𝛒 = {2, 𝑑; 𝜌!, 𝜌%} is: 

𝛿)�
$∗(𝛙, 𝛒) = 𝑁̀(2(𝛒) >ℎa#2(𝛒) − ℎa#1(𝛒)? + 𝑁̀#2(𝛒) >ℎa)2(𝛒) − ℎa)1(𝛒)?	

= 𝑁(𝜌# + 𝜌))Y
𝜌#Δ𝑌a#(1; 𝛒) + 𝜌)Δ𝑌a#(2; 𝛒)

𝜌# + 𝜌)
− Δ𝑌a#(0; 𝛒)Z + 𝑁𝜌)K1 − 𝑌a#(2; 𝛒)L

⋅ 7
Δ𝑌a)(2; 𝛒)
1 − 𝑌a#(2; 𝛒)

−
𝜌(Δ𝑌a)(0; 𝛒) + 𝜌#Δ𝑌a)(1; 𝛒)

𝜌( >1 − 𝑌a#(0; 𝛒)? + 𝜌# >1 − 𝑌a#(1; 𝛒)?
9	

= 𝑁 ⋅ ,(𝜌# + 𝜌)) Y
𝜌#Δ𝑌a#(1; 𝛒) + 𝜌)Δ𝑌a#(2; 𝛒)

𝜌# + 𝜌)
− Δ𝑌a#(0; 𝛒)Z + 𝜌)

⋅ 7Δ𝑌a)(2; 𝛒) − K1 − 𝑌a#(2; 𝛒)L ⋅
𝜌(Δ𝑌a)(0; 𝛒) + 𝜌#Δ𝑌a)(1; 𝛒)

𝜌( >1 − 𝑌a#(0; 𝛒)? + 𝜌# >1 − 𝑌a#(1; 𝛒)?
96 

= 𝑁 ⋅ ,>𝜌#Δ𝑌a#(1; 𝛒) + 𝜌)Δ𝑌a#(2; 𝛒) − (𝜌# + 𝜌)) ⋅ Δ𝑌a#(0; 𝛒)? + 𝜌)

⋅ 7Δ𝑌a)(2; 𝛒) −
(𝜌( + 𝜌#) ⋅ >1 − 𝑌a#(2; 𝛒)?

𝜌( >1 − 𝑌a#(0; 𝛒)? + 𝜌# >1 − 𝑌a#(1; 𝛒)?
⋅
𝜌(Δ𝑌a)(0; 𝛒) + 𝜌#Δ𝑌a)(1; 𝛒)

𝜌( + 𝜌#
96.						 

      Consider 𝐸 ~𝛿C�
A∗(𝛙, 𝛒)�. 
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𝐸 ]𝛿)�
$∗(𝛙, 𝛒)_ = 𝐸 g𝑁

⋅ ,>𝜌#Δ𝑌a#(1; 𝛒) + 𝜌)Δ𝑌a#(2; 𝛒) − (𝜌# + 𝜌)) ⋅ Δ𝑌a#(0; 𝛒)? + 𝜌)

⋅ 7Δ𝑌a)(2; 𝛒) −
(𝜌( + 𝜌#) ⋅ >1 − 𝑌a#(2; 𝛒)?

𝜌( >1 − 𝑌a#(0; 𝛒)? + 𝜌# >1 − 𝑌a#(1; 𝛒)?
⋅
𝜌(Δ𝑌a)(0; 𝛒) + 𝜌#Δ𝑌a)(1; 𝛒)

𝜌( + 𝜌#
96j 

= 𝑁 ⋅ �@𝜌#	 Δ𝑌/#(1; 𝛒) + 𝜌)	 Δ𝑌/#(2; 𝛒)A − (𝜌#	 + 𝜌)) ⋅ Δ𝑌/#(0; 𝛒) + 𝜌) ⋅ Δ𝑌/)(2; 𝛒)

− 𝐸 ,𝜌) ⋅ 7
(𝜌( + 𝜌#) ⋅ >1 − 𝑌a#(2; 𝛒)?

𝜌( >1 − 𝑌a#(0; 𝛒)? + 𝜌# >1 − 𝑌a#(1; 𝛒)?
⋅
𝜌(Δ𝑌a)(0; 𝛒) + 𝜌#Δ𝑌a)(1; 𝛒)

𝜌( + 𝜌#
96�						(S24) 

      Comparing equation (S20) with equation (S24), we know that 𝐸 ~𝛿C�
A∗(𝛙, 𝛒)� ≠ 𝛿CA(𝛙, 𝛒) if 

vaccine has a non-null effect, as equation (S24) misses the term 𝜌%		 ⋅ [Δ𝑌CC(1; 𝛒) − Δ𝑌CC(0; 𝛒)] and 

𝐸 »𝜌C ⋅
(D&$D$)⋅6%0=U$(C;𝛒):

D&6%0=U$(!;𝛒):$D$6%0=U$(%;𝛒):
⋅ D&E=

U>(!;𝛒)$D$E=U>(%;𝛒)
D&$D$

¼ ≠ 𝜌C		 ⋅ Δ𝑌CC(0; 𝛒).  

4.2 Simulation  

We simulate the epidemic under strategy 𝛒F = (2,60; 0.2, 0.3) based on the same model (equation 

[8]), scenarios (Table 1), parameters (Table S4), and initial conditions (Table S5) as with the 

simulations in the main text. We examine the bias of the hazard difference estimator 𝛿C�
A∗(𝛙, 𝛒′) 

relative to the causal estimand 𝛿CA(𝛙, 𝛒′), where 𝛙 = {2, 60; 1,0}, and identify the conditions 

under which the bias would be substantial. 

      The hazard difference estimator overestimates directly avertible infections when VEinf = 90% 

(Figure S6A; Table S13). However, the hazard difference estimator overestimates directly 

avertible deaths in Scenarios 3 to 6 and underestimates directly avertible deaths in other scenarios 

(Figure S6B; Table S13).  



 47 

      Take Scenario 3 where IFR=100% as an example. The hazard difference estimator 

overestimates avertible deaths. Due to high VEinf, survival is lower among 𝑥 = 2 compared to the 

average of 𝑥 = 1 or 𝑥 = 0 (Figure S3). Specifically,  
6D&)$D$) :⋅<%0=U$6C;𝛒):@

D&)6%0=U$(!;𝛒)):$D$) 6%0=U$(%;𝛒)):
< 1 in equation 

(S24), such that 𝐸 �𝜌CF ⋅
6D&)$D$) :⋅<%0=U$6C;𝛒):@

D&) 6%0=U$(!;𝛒)):$D$) 6%0=U$(%;𝛒)):
⋅ D&

)E=U>(!;𝛒)$D$)E=U>6%;𝛒):
D&)$D$)

�  in equation (S24) is 

smaller than 𝜌CF	 ⋅ Δ𝑌CC(0; 𝛒F) in equation (S20).  

      However, in Scenario 2 where IFR=10%, the hazard difference estimator underestimates 

avertible deaths because the relative survival is similar (i.e., 
6D&)$D$) :⋅<%0=U$6C;𝛒):@

D&)6%0=U$(!;𝛒)):$D$) 6%0=U$(%;𝛒)):
≈ 1), such 

that  𝐸 �𝜌CF ⋅
6D&)$D$) :⋅<%0=U$6C;𝛒):@

D&) 6%0=U$(!;𝛒)):$D$) 6%0=U$(%;𝛒)):
⋅ D&

)E=U>6!;𝛒):$D$)E=U>6%;𝛒):
D&)$D$)

� in equation (S24) is greater than 

𝜌CF	 ⋅ Δ𝑌CC(0; 𝛒F) in equation (S20). 
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5 Bias of the hazard difference estimator relative to the causal estimand for vaccination at 

an arbitrary number of vaccination times 

5.1 Analytic comparison 

Now consider vaccination at an arbitrary number of vaccination times (i.e., 𝑞 ∈ ℕ). First, expand 

𝛿"$%A (𝛙, 𝛒) in equation (S21) as: 

𝛿!"#$ (𝛙, 𝛒) = 𝑁 ⋅*𝜌%	 ⋅ >𝑌/!"#(𝑘; 𝛒) − 𝑌/!"#(0; 𝛒)?
!"#

%'#

 

= 𝑁 ⋅*𝜌%	 ⋅ 7*Δ𝑌/&(𝑘; 𝛒)
!"#

&'#

−*Δ𝑌/&(0; 𝛒)
!"#

&'#

9
!"#

%'#

 

= 𝑁 ⋅*𝜌%	 ⋅ 7Δ𝑌/#(𝑘; 𝛒) +*Δ𝑌/&(𝑘; 𝛒)
!"#

&')

− Δ𝑌/#(0; 𝛒) −*Δ𝑌/&(0; 𝛒)
!"#

&')

9
!"#

%'#

 

= 𝑁 ⋅ ,*𝜌%	 ⋅ @Δ𝑌/#(𝑘; 𝛒) − Δ𝑌/#(0; 𝛒)A
!"#

%'#

+*𝜌%	 ⋅ 7*Δ𝑌/&(𝑘; 𝛒)
!"#

&')

−*Δ𝑌/&(0; 𝛒)
!"#

&')

9
!"#

%'#

6						(S25) 

      Then, expand 𝛿"$%|A∗(𝛙, 𝛒) in equation (S23) as: 

𝛿!"#̂
$∗(𝛙, 𝛒) = *]𝑁̀&,#2 (𝛒) ⋅ >ℎa&2(𝛒) − ℎa&1(𝛒)?_

!"#

&'#

 

=*�𝑁 ,*𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#

%'&

6 ⋅ ,
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#
%'&

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#
%'&

−
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)&,#
%'(

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?&,#
%'(

6�
!"#

&'#

 

= 𝑁*�*𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#

%'&

− ,*𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#

%'&

6 ⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)&,#
%'(

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?&,#
%'(

�
!"#

&'#

 

Pulling	𝑙 = 1	from	the	summation → 

= 	𝑁�*𝜌%Δ𝑌a#(𝑘; 𝛒)
!"#

%'#

−7*𝜌%

!"#

%'#

9 ⋅ Δ𝑌a#(0; 𝛒)

+*�*𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#

%'&

− ,*𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#

%'&

6 ⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)&,#
%'(

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?&,#
%'(

�
!"#

&')

� 
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= 𝑁

⎩
⎪
⎨

⎪
⎧

*𝜌% >Δ𝑌a#(𝑘; 𝛒) − Δ𝑌a#(0; 𝛒)?
!"#

%'#

+*

⎣
⎢
⎢
⎢
⎢
⎡

*𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#

%'&

−7*𝜌%

!"#

%'&

9 ⋅

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#
%'&

∑ 𝜌%
!"#
%'&

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?&,#
%'(

∑ 𝜌%&,#
%'(

⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)&,#
%'(

∑ 𝜌%&,#
%'(

⎦
⎥
⎥
⎥
⎥
⎤

!"#

&')

⎭
⎪
⎬

⎪
⎫

. 

      Now consider 𝐸 ~𝛿"$%|A∗(𝛙, 𝛒)�. 

𝐸 ]𝛿!"#̂
$∗(𝛙, 𝛒)_ = 𝐸

⎣
⎢
⎢
⎢
⎢
⎡

𝑁

⎩
⎪
⎨

⎪
⎧

*𝜌% >Δ𝑌a#(𝑘; 𝛒) − Δ𝑌a#(0; 𝛒)?
!"#

%'#

+*

⎣
⎢
⎢
⎢
⎢
⎡

*𝜌%Δ𝑌a&(𝑘; 𝛒)
!"#

%'&

−7*𝜌%

!"#

%'&

9 ⋅

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#
%'&

∑ 𝜌%
!"#
%'&

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?&,#
%'(

∑ 𝜌%&,#
%'(

⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)&,#
%'(

∑ 𝜌%&,#
%'(

⎦
⎥
⎥
⎥
⎥
⎤

!"#

&')

⎭
⎪
⎬

⎪
⎫

⎦
⎥
⎥
⎥
⎥
⎤

 

Using	arguments	parallel	with	those	in	the	proof	of	Theorem	S2 ⟶ 

= 𝑁 ⋅

⎩
⎪
⎨

⎪
⎧

,*𝜌%	 ⋅ @Δ𝑌/#(𝑘; 𝛒) − Δ𝑌/#(0; 𝛒)A
!"#

%'#

6

+*,*𝜌%Δ𝑌/&(𝑘; 𝛒)
!"#

%'&

6 − 𝐸

⎣
⎢
⎢
⎢
⎢
⎡

*

⎣
⎢
⎢
⎢
⎢
⎡

7*𝜌%

!"#

%'&

9 ⋅

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?
!"#
%'&

∑ 𝜌%
!"#
%'&

∑ 𝜌% >1 − 𝑌a&,#(𝑘; 𝛒)?&,#
%'(

∑ 𝜌%&,#
%'(

⋅
∑ 𝜌%Δ𝑌a&(𝑘; 𝛒)&,#
%'(

∑ 𝜌%&,#
%'(

⎦
⎥
⎥
⎥
⎥
⎤

!"#

&')

⎦
⎥
⎥
⎥
⎥
⎤

!"#

&')

⎭
⎪
⎬

⎪
⎫

						(S26) 

     Equation (S25) and equation (S26) have the same first term. However, if vaccination has a non-

null effect, ∑ 𝜌?	 ⋅ ?∑ Δ𝑌CB(𝑘; 𝛒)
"$%
B&C − ∑ Δ𝑌CB(0; 𝛒)

"$%
B&C @"$%

?&% = ∑ 𝜌?	 ⋅ ∑ Δ𝑌CB(𝑘; 𝛒)
"$%
B&C

"$%
?&% − ∑ 𝜌?	 ⋅

"$%
?&%

∑ Δ𝑌CB(0; 𝛒)
"$%
B&C  in equation (S25) does not equal to ∑ S∑ 𝜌?Δ𝑌CB(𝑘; 𝛒)

"$%
?&B T"$%

B&C −

𝐸 ¾∑ ¾?∑ 𝜌?
"$%
?&B @ ⋅

∑ 425$'671'$(2;𝛒):
"#$
2%1

∑ 42
"#$
2%1

∑ 425$'671'$(2;𝛒):
1'$
2%&

∑ 42
1'$
2%&

⋅ ∑ D2E=U1(?;𝛒)
1'$
2%&
∑ D21'$
2%&

¿"$%
B&C ¿  in equation (S26), implying 

𝐸 ~𝛿"$%|A∗(𝛙, 𝛒)� ≠ 𝛿"$%A (𝛙, 𝛒).  

5.2 Simulation 
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We simulate the epidemic under strategy 𝛒FF = {99,7; 𝟎. 𝟎𝟏} based on the model in equation (S14), 

scenarios in Table 1, initial values in Table S2 and parameters in Table S4. Similar to findings 

observed under strategy 𝛒F , the hazard difference estimator overestimates directly avertible 

infections when VEinf=90% (Figure S7A, Table S14). It substantially overestimates directly 

avertible deaths when IFR=100% and VE death = 0% (Scenario 3), slightly overestimates them in 

Scenarios 4, 5, 6 and 9, and underestimates them in Scenarios 1, 2, 7, and 8 (Figure S7B, Table 

S14).  



  
53

 

 T
A

B
L

E
 S

14
 | 

A
bs

ol
ut

e 
an

d 
pe

rc
en

ta
ge

 b
ia

s o
f t

he
 h

az
ar

d 
di

ff
er

en
ce

 e
st

im
at

or
 re

la
tiv

e 
to

 th
e 

ca
us

al
 e

st
im

an
d 

fo
r a

ve
rti

bl
e 

ou
tc

om
es

 u
nd

er
 st

ra
te

gy
 

𝛒F
F
=
{9
9,
7;
𝟎.
𝟎𝟏
} i

n 
sc

en
ar

io
s v

ar
ie

d 
by

 in
fe

ct
io

n-
fa

ta
lit

y 
ra

te
 (I

FR
), 

va
cc

in
e 

ef
fic

ac
y 

ag
ai

ns
t i

nf
ec

tio
n 

(V
E i

nf
) a

nd
 v

ac
ci

ne
 e

ff
ic

ac
y 

ag
ai

ns
t d

ea
th

 
gi

ve
n 

in
fe

ct
io

n 
(V

E d
ea

th
) 

 
Sc

en
ar

io
 1

 
Sc

en
ar

io
 2

 
Sc

en
ar

io
 3

 
Sc

en
ar

io
 4

 
Sc

en
ar

io
 5

 
Sc

en
ar

io
 6

 
Sc

en
ar

io
 7

 
Sc

en
ar

io
 8

 
Sc

en
ar

io
 9

 
 

IF
R

: 1
%

, 
V

E i
nf

 =
 

90
%

, 
V

E d
ea

th
 =

 0
%

 

IF
R

: 1
0%

, 
V

E i
nf

 =
 

90
%

, 
V

E d
ea

th
 =

 0
%

 

IF
R

: 1
00

%
, 

V
E i

nf
 =

 
90

%
, 

V
E d

ea
th

 =
 0

%
 

IF
R

: 1
%

, 
V

E i
nf

 =
 0

%
, 

V
E d

ea
th

 =
 

90
%

 

IF
R

: 1
0%

, 
V

E i
nf

 =
 0

%
, 

V
E d

ea
th

 =
 

90
%

 

IF
R

: 1
00

%
, 

V
E i

nf
 =

 0
%

, 
V

E d
ea

th
 =

 
90

%
 

IF
R

: 1
%

, 
V

E i
nf

 =
 

90
%

, 
V

E d
ea

th
 =

 
90

%
 

IF
R

: 1
0%

, 
V

E i
nf

 =
 

90
%

, 
V

E d
ea

th
 =

 
90

%
 

IF
R

: 1
00

%
, 

V
E i

nf
 =

 
90

%
, 

V
E d

ea
th

 =
 

90
%

 
A

ve
rt

ib
le

 
in

fe
ct

io
ns

 a  
48

04
1.

54
 

 (2
5.

08
%

) 
51

05
0.

02
 

 (2
6.

9%
) 

18
32

21
.6

5 
 (2

95
.7

8%
) 

0.
00

 
 

0.
00

 
 

0.
00

 
 

48
03

4.
29

 
 (2

5.
07

%
) 

50
96

7.
59

 
 (2

6.
85

%
) 

14
42

66
.7

2 
 (1

42
.8

4%
) 

A
ve

rt
ib

le
 

de
at

hs
 a  

-3
16

.3
6 

 (-
16

.5
1%

) 
-2

81
4.

54
 

 (-
14

.8
3%

) 
13

35
78

.0
7 

 (2
15

.6
4%

) 
0.

7 
 (0

.0
3%

) 
72

.5
9 

 (0
.3

%
) 

99
81

.3
6 

 (4
.0

2%
) 

-3
1.

53
 

 (-
1.

22
%

) 
-2

70
.1

 
 (-

1.
04

%
) 

10
76

5.
53

 
 (4

.1
7%

) 
a  

Pe
rc

en
ta

ge
 d

iff
er

en
ce

s 
w

er
e 

ca
lc

ul
at

ed
 u

si
ng

 v
al

ue
s 

ro
un

de
d 

to
 n

in
e 

de
ci

m
al

 p
la

ce
s, 

to
 a

vo
id

 u
ni

nt
er

pr
et

ab
le

, e
xt

re
m

el
y 

sm
al

l 
no

n-
ze

ro
 v

al
ue

s 
(a

bs
ol

ut
e 

va
lu

e 
< 

10
⁻⁹)

. A
ll 

va
lu

es
 in

 th
e 

ta
bl

e 
ar

e 
ro

un
de

d 
to

 tw
o 

de
ci

m
al

 p
la

ce
s 

 



  
54

 

 
 

FI
G

U
R

E
 S

7 
| I

nf
ec

tio
ns

 (
A

) 
an

d 
de

at
hs

 (
B

) 
di

re
ct

ly
 a

ve
rti

bl
e 

am
on

g 
un

va
cc

in
at

ed
 i

nd
iv

id
ua

ls
 w

ith
 s

tra
te

gy
 𝛒
FF
=
{9
9,
7;
𝟎.
𝟎𝟏
} u

nd
er

 d
iff

er
en

t 

sc
en

ar
io

s v
ar

ie
d 

by
 in

fe
ct

io
n-

fa
ta

lit
y 

ra
te

 (I
FR

), 
va

cc
in

e 
ef

fic
ac

y 
ag

ai
ns

t i
nf

ec
tio

n 
(V

E i
nf

) a
nd

 v
ac

ci
ne

 e
ff

ic
ac

y 
ag

ai
ns

t d
ea

th
 g

iv
en

 in
fe

ct
io

n 
(V

E d
ea

th
)

A 
B 



 
 

55 

References 

1. Haas EJ, McLaughlin JM, Khan F, et al. Infections, hospitalisations, and deaths averted via a 
nationwide vaccination campaign using the Pfizer–BioNTech BNT162b2 mRNA COVID-19 
vaccine in Israel: a retrospective surveillance study. The Lancet Infectious Diseases. 
2022;22(3):357-366. doi:10.1016/S1473-3099(21)00566-1 

2. Brault A, Hart A, Uribe P, et al. Direct impact of COVID-19 vaccination in Chile: averted 
cases, hospitalizations, ICU admissions, and deaths. BMC Infect Dis. 2024;24(1):467. 
doi:10.1186/s12879-024-09304-1 

3. Santos CVBD, Noronha TGD, Werneck GL, Struchiner CJ, Villela DAM. Estimated 
COVID-19 severe cases and deaths averted in the first year of the vaccination campaign in 
Brazil: a retrospective observational study. The Lancet Regional Health - Americas. 
2023;17:100418. doi:10.1016/j.lana.2022.100418 

4. Kayano T, Sasanami M, Kobayashi T, et al. Number of averted COVID-19 cases and deaths 
attributable to reduced risk in vaccinated individuals in Japan. The Lancet Regional Health - 
Western Pacific. 2022;28:100571. doi:10.1016/j.lanwpc.2022.100571 

5. Kayano T, Nishiura H. Assessing the COVID-19 vaccination program during the Omicron 
variant (B.1.1.529) epidemic in early 2022, Tokyo. BMC Infect Dis. 2023;23(1):748. 
doi:10.1186/s12879-023-08748-1 

6. Vilches TN, Moghadas SM, Sah P, et al. Estimating COVID-19 Infections, Hospitalizations, 
and Deaths Following the US Vaccination Campaigns During the Pandemic. JAMA Netw 
Open. 2022;5(1):e2142725. doi:10.1001/jamanetworkopen.2021.42725 

7. Schneider EC, Shah A, Sah P, et al. Impact of U.S. COVID-19 Vaccination Efforts: An 
Update on Averted Deaths, Hospitalizations, and Health Care Costs Through March 2022. 
To the Point. April 8, 2022. Accessed December 10, 2023. https://doi.org/10.26099/d3dm-
fa91 

8. Gavish N, Yaari R, Huppert A, Katriel G. Population-level implications of the Israeli booster 
campaign to curtail COVID-19 resurgence. Sci Transl Med. 2022;14(647):eabn9836. 
doi:10.1126/scitranslmed.abn9836 

9. Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first 
year of COVID-19 vaccination: a mathematical modelling study. The Lancet Infectious 
Diseases. 2022;22(9):1293-1302. doi:10.1016/S1473-3099(22)00320-6 

10. Shoukat A, Vilches TN, Moghadas SM, et al. Lives saved and hospitalizations averted by 
COVID-19 vaccination in New York City: a modeling study. The Lancet Regional Health - 
Americas. 2022;5:100085. doi:10.1016/j.lana.2021.100085 

11. Hudgens MG, Halloran ME. Toward Causal Inference With Interference. Journal of the 
American Statistical Association. 2008;103(482):832-842. 
doi:10.1198/016214508000000292 



 
 

56 

12. Sobel ME. What Do Randomized Studies of Housing Mobility Demonstrate?: Causal 
Inference in the Face of Interference. Journal of the American Statistical Association. 
2006;101(476):1398-1407. doi:10.1198/016214506000000636 

13. VanderWeele TJ, Tchetgen Tchetgen EJ. Effect partitioning under interference in two-stage 
randomized vaccine trials. Statistics & Probability Letters. 2011;81(7):861-869. 
doi:10.1016/j.spl.2011.02.019 

14. Jia KM, Boyer CB, Wallinga J, Lipsitch M. Causal Estimands for Analyses of Averted and 
Avertible Outcomes due to Infectious Disease Interventions. Epidemiology. 2025;36(3):363-
373. doi:10.1097/EDE.0000000000001839 

15. Forastiere L, Airoldi EM, Mealli F. Identification and Estimation of Treatment and 
Interference Effects in Observational Studies on Networks. Journal of the American 
Statistical Association. 2021;116(534):901-918. doi:10.1080/01621459.2020.1768100 

16. Yang W, Lipsitch M, Shaman J. Inference of seasonal and pandemic influenza transmission 
dynamics. Proc Natl Acad Sci USA. 2015;112(9):2723-2728. doi:10.1073/pnas.1415012112 

17. Guerra FM, Bolotin S, Lim G, et al. The basic reproduction number (R 0 ) of measles: a 
systematic review. The Lancet Infectious Diseases. 2017;17(12):e420-e428. 
doi:10.1016/S1473-3099(17)30307-9 

18. Locatelli I, Trächsel B, Rousson V. Estimating the basic reproduction number for COVID-19 
in Western Europe. Khudyakov YE, ed. PLoS ONE. 2021;16(3):e0248731. 
doi:10.1371/journal.pone.0248731 

19. Nguyen VH, Crépey P, Williams BA, et al. Modeling the impact of early vaccination in an 
influenza pandemic in the United States. npj Vaccines. 2025;10(1):62. doi:10.1038/s41541-
025-01081-5 

20. Portnoy A, Jit M, Ferrari M, Hanson M, Brenzel L, Verguet S. Estimates of case-fatality 
ratios of measles in low-income and middle-income countries: a systematic review and 
modelling analysis. The Lancet Global Health. 2019;7(4):e472-e481. doi:10.1016/S2214-
109X(18)30537-0 

21. Ayoub HH, Mumtaz GR, Seedat S, Makhoul M, Chemaitelly H, Abu-Raddad LJ. Estimates 
of global SARS-CoV-2 infection exposure, infection morbidity, and infection mortality rates 
in 2020. Global Epidemiology. 2021;3:100068. doi:10.1016/j.gloepi.2021.100068 

22. Centers for Disease Control and Prevention. U.S. Flu Vaccine Effectiveness (VE) Data for 
2021-2022.; 2024. Accessed July 3, 2025. https://www.cdc.gov/flu-vaccines-
work/php/effectiveness-studies/2021-2022.html 

23. Di Pietrantonj C, Rivetti A, Marchione P, Debalini MG, Demicheli V. Vaccines for measles, 
mumps, rubella, and varicella in children. Cochrane Acute Respiratory Infections Group, ed. 
Cochrane Database of Systematic Reviews. 2021;2021(11). 
doi:10.1002/14651858.CD004407.pub5 



 
 

57 

24. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA 
Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-2615. doi:10.1056/NEJMoa2034577 

25. Ferdinands JM, Thompson MG, Blanton L, Spencer S, Grant L, Fry AM. Does influenza 
vaccination attenuate the severity of breakthrough infections? A narrative review and 
recommendations for further research. Vaccine. 2021;39(28):3678-3695. 
doi:10.1016/j.vaccine.2021.05.011 

26. Nic Lochlainn LM, De Gier B, Van Der Maas N, et al. Immunogenicity, effectiveness, and 
safety of measles vaccination in infants younger than 9 months: a systematic review and 
meta-analysis. The Lancet Infectious Diseases. 2019;19(11):1235-1245. doi:10.1016/S1473-
3099(19)30395-0 

27. Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 Vaccine Protection against 
SARS-CoV-2 Infection in Qatar. N Engl J Med. 2021;385(24). 
doi:10.1056/NEJMoa2114114 

28. Cauchemez S, Ferguson NM. Likelihood-based estimation of continuous-time epidemic 
models from time-series data: application to measles transmission in London. J R Soc 
Interface. 2008;5(25):885-897. doi:10.1098/rsif.2007.1292 

29. Della Rossa F, Salzano D, Di Meglio A, et al. A network model of Italy shows that 
intermittent regional strategies can alleviate the COVID-19 epidemic. Nat Commun. 
2020;11(1):5106. doi:10.1038/s41467-020-18827-5 

30. Centers for Disease Control and Prevention. Rates of COVID-19 Cases or Deaths by Age 
Group and Vaccination Status. Published online 2025. Accessed August 14, 2025. 
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-
Age-Group-and/3rge-nu2a/about_data 

31. Hernán MA, Sterne JAC, Higgins JPT, Shrier I, Hernández-Díaz S. A Structural Description 
of Biases That Generate Immortal Time. Epidemiology. 2025;36(1):107-114. 
doi:10.1097/EDE.0000000000001808 

32. Jia KM, Hanage WP, Lipsitch M, et al. Estimated preventable COVID-19-associated deaths 
due to non-vaccination in the United States. Eur J Epidemiol. Published online April 24, 
2023. doi:10.1007/s10654-023-01006-3 

33. Zhong M, Glazer T, Kshirsagar M, et al. Estimating Vaccine-Preventable COVID-19 Deaths 
Among Adults Under Counterfactual Vaccination Scenarios in The United States: A 
Modeling Study Using Observational Data. J Pharm Pharmacol Res. 2023;07(03). 
doi:10.26502/fjppr.079 

 




