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Summary
Large language models (LLMs) have become increasingly ubiquitous, but most researchers 15

interact with them through chat interfaces rather than as statistical models. This paper provides
an overview of how generative pre-trained transformers (GPTs) work for researchers with back-
grounds in biostatistics, epidemiology, or health economics. We frame GPTs as an extension of
familiar statistical methods: ordinary least squares, generalized linear models, and neural net-
works. We then describe the specific features that enable GPTs to generate text at scale across 20

applications, including tokenization, embeddings, and the attention mechanism that allows mod-
els to weigh the relevance of different parts of an input sequence. Throughout, we emphasize
that the mathematical operations underlying these models (e.g., matrix multiplication, gradient
descent, softmax transformations) are conceptually accessible to researchers with quantitative
training, even as optimal architectures and training procedures remain areas of active research. 25

We conclude by discussing factors that have driven recent improvements in model performance,
including innovations in preference learning, increased scale, expanded context windows, chain-
of-thought reasoning, and supporting infrastructure.
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1. Introduction

Following the release of ChatGPT in 2022, researchers have increasingly interacted with

large language models (LLMs) (OpenAI, 2022). In medicine and health policy, LLMs both

support research tasks like coding and classification and are themselves objects of study, with the

objective of understanding performance on tasks like exam performance and diagnostic support35

(Kung et al., 2023; Abbas et al., 2024; Eriksen et al., 2024; Katz et al., 2024). The preeminent

LLM architecture is the generative pre-trained transformer (GPT). Popular GPTs include models

from OpenAI (e.g., GPT-4o, GPT-o1, GPT-5.2), Meta (Llama), Google (Gemini), and Anthropic

(Claude) (OpenAI, 2025a; Meta, 2025; Google, 2025; Anthropic, 2025). The name “GPT” reflects

that these models generate text after being pre-trained on a large corpus (e.g., from the internet)40

in a self-supervised manner absent explicit labels, employing a neural network architecture called

a transformer (Radford et al., 2018).

Most researchers interact with GPTs primarily through chat interfaces, and few work directly

with their underlying statistical architecture. Furthermore, because GPTs are recent innovations

originating in computer science and industry (Vaswani et al., 2017; Radford et al., 2018), which45

have different jargon, notation, and dissemination practices than health and medicine, few re-

searchers encountered them in formal training. We wrote this paper because, in our attempt to

learn about LLMs and teach them to our students, it was difficult to find resources with familiar

language that built on our mathematical foundations and intuitions. We hope this translation effort

may be useful for others in understanding GPTs.50

In this work, we provide an overview of how GPTs work for researchers with a background

in biostatistics, epidemiology, health economics or other fields outside computer science for

which ordinary least squares remains a mainstay. We start by explaining the objective of GPTs:

completing text sequences. We then review OLS and generalized linear models (GLMs) as

building blocks for neural networks. Last, we describe features that allowed GPTs, a type of55

neural network, to achieve text generation at scale. Throughout, we highlight that the mathematical

operations underlying GPTs should be familiar to those with an understanding of OLS, even as

GPT performance, interpretability, and optimal architecture remain active areas of investigation.
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2. Text Generation Problems

Most users interact with GPTs through text-based chat interfaces, providing a prompt and 60

receiving output text, a completion (HuggingFace, 2025; OpenAI, 2025b; Community, 2025).

Though completions appear as a single block, they in fact represent multiple iterative model runs

(Vaswani et al., 2017).

At a high level, GPTs are “text generation” or “completion generation” models: given a sequence

of words, they predict what follows (HuggingFace, 2025; Gadesha, 2024; Li et al., 2024) (Figure 65

1). Readers are likely familiar with the convention of notating a prediction 𝑌 for a true outcome

𝑌 based on a vector of inputs 𝑿. Here, functions of the user prompt are used to create the 𝑿

vector, and GPTs output a predicted probability distribution over possible next words (or sub-

words, called tokens) (Radford et al., 2018). As an illustration, consider predicting the blank in:

“Every week, the little girl give treats to a furry, friendly .” The 𝑿 vector should 70

encode attributes of the preceding words (e.g., the adjectives). A high-quality model would assign

probability to various friendly animals, perhaps 40% to dog, 30% to cat, 10% to guinea pig. The

precise distribution would depend on the training data: a model trained on sitcoms would produce

different predictions than one trained on cartoons (e.g., higher probability of “squirrel”) or horror

films (e.g., higher probability of “Cujo”). 75

Using this distribution, we generate a prediction for the output sequence 𝑦̂ by generating

predictions for sequential tokens in an autoregressive process (Sanderson, 2024). At each step,

the model predicts a distribution over the next token given the input X and all previously generated

tokens. The selected token is appended to the sequence, and this process is repeated until a special

end-of-sequence (EOS) token is generated, at which point it terminates (Vaswani et al., 2017). 80

For example, given the sequence X described above, the model may first predict the token guinea,

then condition on X augmented with guinea to predict pig, and finally predict EOS. The resulting

decoded sequence 𝑌 = ({𝑔𝑢𝑖𝑛𝑒𝑎}, {𝑝𝑖𝑔}) constitutes the model’s full response.

Although text completion models have long been subject of research, prior to transformers, they

often performed poorly and were difficult to scale (Vaswani et al., 2017). High-quality text gener- 85

ation requires representing word meaning, position, and context while remaining computationally

tractable. The following sections describe how modern GPTs achieve this.
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Fig. 1. The text generation problem and an overview of
generative pre-trained transformer (GPT) structure.

3. Basic Prediction Models: OLS, GLMs, and Neural Networks

We begin with a brief review of OLS and GLMs and then use these to explain neural networks,

the class of machine learning models that includes GPTs (Figure 2). In the next section, we will90

detail specific features of GPTs.

3.1. Ordinary least squares (OLS)

As the workhorse for many scientific analyses, OLS estimates parameters (commonly called

𝜷s) that minimize mean-squared error of predictions of an outcome 𝑌𝑖 for observation 𝑖 from a

linear combination of inputs X𝑖 = [1 𝑥1𝑖 . . . 𝑥𝑝𝑖] (a row vector for observation 𝑖). We start here95

not because OLS was ever a realistic option for natural language processing, but as a toy example

to ground our discussion in the most intuitive and widely-used method in many fields. Given 𝑛

observations (𝑖 = 1, . . . , 𝑛) and 𝑝 predictors, we find parameters that minimize:

arg min
𝛽0,𝛽1,...𝛽𝑝

𝑛∑︁
𝑖=1

(
𝑌𝑖 −

(
𝛽0 + 𝛽1𝑥1𝑖 + ... + 𝛽𝑝𝑥𝑝𝑖

) )2
, or equivalently,

arg min
𝜷

𝑛∑︁
𝑖=1

(𝑌𝑖 − X𝑖𝜷)2,100
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Fig. 2. An overview of statistical methods for prediction
problems. Neural networks are shown abstractly; the final
layer depends on the task: regression (identity link), binary
classification (sigmoid), or multiclass classification (soft-

max).

where 𝜷 = [𝛽0 𝛽1 . . . 𝛽𝑝]𝑇 . We obtain a vector of parameter estimates 𝜷̂ in closed form by

taking the derivative of the objective function, setting it equal to 0, and solving for the optimal 𝜷̂.

With these estimates, our best prediction for the mean of the outcome, conditional on covariates,

is 𝑌𝑖 = X𝑖 𝜷̂. When there is only one covariate (𝑝 = 1), we can think of this as generating the

best-fit line, in terms of minimizing mean-squared error. 105

To better understand these limitations and motivate GPTs, we consider a stylized example of

how OLS might be used for text generation. Letting 𝑉 be the number of possible next words,

suppose 𝑿𝒊 denotes some simple representation of the preceding text. 𝑿𝒊 could be a basis (one-

hot) vector indicating the most recent word, a concatenation of vectors indicating the last several,

or counts of word frequency (a “bag of words”). With this representation, we could then fit 𝑉 110

separate OLS regressions, each predicting a binary outcome for whether the next word takes a

particular value. This would yield next-word predictions 𝑌𝑖 = {𝑌𝑖1, . . . , 𝑌𝑖𝑉 } for any X𝑖 . These

cannot be interpreted as probabilities, so we would need to normalize them, potentially inspired

by linear probability models:
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𝑝𝑖𝑤 =
𝑌𝑖𝑤∑𝑉
𝑗=1𝑌𝑖 𝑗

.

To generate new text, we could then draw from the resulting distribution. For example, we115

might deterministically select the word corresponding to the largest 𝑝𝑖𝑤 . Alternatively, we could

randomly draw words with the probability of choosing each word represented by 𝑝𝑖𝑤 .

Unsurprisingly, this is not a viable approach. While OLS has many desirable properties, it is

restricted to linear functions of inputs. When the true relationship between 𝑿 and 𝒀 is not linear,

OLS will yield weak predictions, and language has complex structure that does not lend itself120

to linear representation. OLS estimates are also unbounded, meaning probability predictions

could be negative. Directly modeling probabilities themselves would conceivably yield better

predictions. Last, OLS performs poorly with many predictors, with reduced efficiency (i.e.,

greater variance) as the number of parameters grows relative to 𝑛. When 𝑝 exceeds 𝑛, parameter

estimates are undefined. To model complex features and interactions of words, we will need a125

different approach.

3.2. Generalized linear models (GLMs)

Generalized linear models (GLMs) allow a partial relaxation of the functional form assumptions

imposed by OLS (McCullagh, 2018). This class of models, which includes OLS as well as logistic

and Poisson regression, allow a partial relaxation of the functional form assumptions imposed130

by OLS (McCullagh, 2018). Rather than modeling the mean as a linear function of parameters,

GLMs model a monotonic transformation of the mean as a linear function of parameters. We call

this transformation the link function 𝑔(·). We solve:

arg min
𝜷

∑︁
𝑖

[
− log 𝑝

(
𝑌𝑖 | 𝜇𝑖 (𝜷)

) ]
where 𝜇𝑖 (𝜷) = 𝑔−1(X𝑖𝜷), and 𝑝(𝑌𝑖 | 𝜇𝑖 (𝜷)) is the likelihood for observation 𝑖. OLS is a special

case: with an identity link (𝑔(𝜇) = 𝜇) and Gaussian likelihood, minimizing negative log-likelihood135

is equivalent to minimizing squared error.
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Although most GLMs cannot be solved in closed form, parameter estimates can be obtained

through gradient descent, which iteratively adjusts parameter estimates along the gradient of the

loss (or log-likelihood) until it reaches stable values (McCullagh, 2018). We then predict the

mean of 𝑌𝑖 as 𝑌𝑖 = 𝑔−1(X𝑖 𝜷̂). 140

For text completion with 𝑉 possible next words, multinomial logistic regression provides a

framework for predicting categorical outcomes. Specifying that 𝐸 [𝑌𝑖𝑤 | 𝑿𝑖] = 𝑝𝑖𝑤 , it uses a

linear function 𝑿𝑖𝜷𝒘 to produce a score (logit) for each next word 𝑤, which is converted to a

probability via the softmax function:

𝑝𝑖𝑤 = softmax
(
X𝑖 𝜷̂

)
𝑤
=

exp
(
X𝑖 𝜷̂

𝑤
)

∑𝑉
𝑗=1 exp

(
X𝑖 𝜷̂

𝑗
)

Exponentiation ensures all values are positive, and the denominator normalizes them to sum to 145

one. Softmax also amplifies differences between inputs: larger values receive disproportionately

more probability, concentrating mass on the most likely outcomes. We return to this property

when discussing temperature in Section 4.5.

Overall, GLMs enable modeling a wider range of functional forms than OLS. However, they

still rely on linear structure relating 𝑿𝑖 to the transformed mean 𝑔(𝐸 [𝑌𝑖 |𝑿𝑖]), which does not 150

hold in the text prediction setting and face similar limitations in terms of performance with

high-dimensional inputs.

3.3. Neural networks

Neural networks can be thought of as chaining GLM-like transformations to more flexibly

model outcomes and work well with large 𝑝 relative to 𝑛 (Ng & Ma, 2023; Nielsen, 2015). The 155

building block is a neuron, which has the same basic structure as a GLM: a linear combination

of inputs, transformed by a nonlinear function. Given a vector 𝒂, a single neuron 𝑓 (𝒂) computes

𝜙(aw + 𝑏) (Nielsen, 2015). The transformation 𝜙 is known as the “activation function,” and is

analogous to the inverse link function 𝑔−1 in a GLM. The “weights” 𝒘 and “bias” 𝑏 are analogous

to the GLM parameters 𝜷. Note that although the general structure of a neuron is similar to 160

that of a GLM, neural networks are not motivated by modeling the distribution of 𝑌 , and the
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requirements for a GLM need not be strictly met. For example, a neural-network neuron can use

non-canonical link/activation functions (e.g., a Rectified Linear Unit (ReLU) function, Appendix

Figure S1), and need not assume exponential family error distributions.

Neural networks organize neurons into “layers” (Figure 3). The first layer of a neural network165

is the “input layer” (ℓ = 1) and consists of the sample value, a = x (where 𝑖 referring to a specific

observation is dropped following computer science notation). That layer has 𝑝 neurons, with each

neuron corresponding to one of the elements in x. The next layer of a neural network is created

from several neurons, with the output of each mapping onto an input in the next layer (ℓ = 2). For

deeper networks, these neuron then become the inputs that define the third layer, and so on. Layers170

between the input and output layers are called ”hidden” layers because users do not interact with

these values. The final layer is called the “output” layer.

Fig. 3. An example neural network, demonstrating a single
input layer, two hidden layers and an output layer. The
arrows illustrate how variables are used from one layer to

compute the next.

The value of a single node layer ℓ > 1 can be written (Nielsen, 2015):

𝑎
(ℓ )
𝑗

= 𝜙

(∑︁
𝑘

𝑤
(ℓ )
𝑗𝑘
𝑎
(ℓ−1)
𝑘

+ 𝑏 (ℓ )
𝑗

)
.
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where 𝑎 (ℓ )
𝑗

is the value of the 𝑗-th neuron in the ℓ-th layer, 𝑎 (ℓ−1)
𝑘

is the value of the 𝑘-th neuron

in the ℓ − 1-th layer,𝑤 (𝑙)
𝑗𝑘

is the weight connecting neuron 𝑘 in layer ℓ − 1 with neuron 𝑗 in layer 175

ℓ, 𝑏 (ℓ )
𝑗

is the bias term for layer ℓ. Alternatively, in vector form, we may write:

a(𝑙) = 𝜙
(
w(𝑙)a(𝑙−1) + b(𝑙) )

As with GLMs, neural networks are fit using gradient descent. Computing gradients through

multiple layers requires the chain rule, working backward from output to input, a procedure called

backpropagation (Nielsen, 2015).

In theory, two-layer neural networks with arbitrary hidden dimension can approximate nearly 180

any functional form (Nielsen, 2015; Cybenko, 1989). However, to make learning from data

tractable, networks are often provided additional structure and typically stack many hidden layers

together (i.e., “deep learning”) (Nielsen, 2015). For example, to process images, researchers use

convolutional neural networks (CNNs) that take weighted sums over groups of pixels of different

sizes to detect edges and objects (Amidi & Amidi, 2024). However, while CNNs worked well for 185

image recognition, they struggled to encode longer-range dependencies between words. Recurrent

neural networks (RNNs) were designed to address this by updating a hidden state when processing

each word in each layer, to be passed forward for future computations (Sutskever et al., 2011;

Schmidt, 2019). Although RNNs were initially a promising approach to text completion and

dominated the natural language space for several years, they struggled to capture relationships 190

across longer context windows and were slow to train because they could not be fully parallelized

(Vaswani et al., 2017). In the next section, we discuss the architecture (“the transformer”) and other

features of generative pre-trained tranformers that dramatically improved next-token prediction

at scale.

4. Generative Pre-Trained Transformers 195

Generative pre-trained transformers (GPTs) are a class of neural network optimized for pre-

dicting the next word in a sequence (Figure 1). In this section, we describe the core components

of GPTs in detail.
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As a roadmap, GPTs first convert an input sequence of words into smaller units called “tokens.”

Tokens are then mapped to vectors called embeddings, which allow researchers to efficiently200

represent word meaning and position. These components were not unique to transformers or

GPTs; tokenization and word embeddings were developed initially with RNNs. Next, embeddings

are passed through a neural network with at least one “transformer” block. Transformer blocks

include an “attention mechanism”, designed to compute how much each preceding token in a

sequence should influence predictions of what follows. The output from this neural network205

defines a probability distribution over all possible next tokens in the model’s vocabulary, from

which a final output is drawn (with randomness controlled by a temperature parameter). We close

the section with discussion model training, as well as factors that determine their performance.

As GPTs have advanced, architectural details have become more proprietary. Therefore, we

describe core structures from published early models here to provide a useful foundation, noting210

that more recent models may include additional advancements.

4.1. Tokenization

As the first step of processing input text, words are mapped onto “tokens”, either entire words

or chunks of words that carry some meaning. Prefixes and suffixes may be tokens; for example,

the word “jumping” may be broken into “jump” and “ing” (OpenAI, 2025c). On average, tokens215

used by OpenAI as of November 2025 contained 4 characters and represented 3
4 th of a word

(OpenAI, 2025d).

The set of possible tokens is determined by algorithms that identify frequently occurring

sequences of characters and group these into tokens until the total number of unique tokens

reaches the target vocabulary size (Sennrich et al., 2016; Stanford Online, 2024). Tokenization220

tends to compress the word vocabulary into a smaller set of subwords (Radford et al., 2019;

OpenAI, 2026). For instance, GPT-2 used 50,000 tokens and GPT-4o about 200,000, compared

to roughly a million words in English (Merriam-Webster, 2025; Radford et al., 2019; OpenAI,

2026). By breaking words into smaller, reusable pieces, tokenization allows related forms to share

information (e.g., some in both something and somewhere).225
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To ensure that all characters can be mapped to tokens, modern tokenizers operate on bytes

(of which there are 256) rather than characters, ensuring that any text, including misspellings,

novel words, or emoji, can be represented without requiring an “unknown” token (Hugging Face,

2024).

4.2. Embeddings 230

Tokens are then mapped to high-dimensional vectors called “embeddings”, which serve as

model inputs. Embeddings are designed so that mathematical operations on them like cosine

similarity (a normalized dot product) and vector addition reflect the semantic meaning of tokens

and, separately, their position within a sequence. By capturing these relationships in a continuous

vector space, models can represent complex interactions using far fewer dimensions than would be 235

required by simpler representations. There are two types of embeddings: semantic and positional

embeddings.

Semantic embeddings

Semantic embeddings represent the meaning of tokens. In a naive setup, we could imagine that

we would represent each token as a unique basis vector – e.g., a =

[
1 0 0 . . .

]𝑇
, the =

[
0 1 0 . . .

]𝑇
. 240

In this setup, the dimensionality of the vector space would have to be at least as large as the vo-

cabulary, and mathematical operations between vectors would not yield linguistically meaningful

results. (For example, all dot products would be zero.) Capturing relationships between tokens,

such as similarity or compositional meaning, would therefore require explicitly modeling two-way

or higher-order interactions between all vectors, requiring many parameters and scaling poorly 245

with sequence length.

In 2013, researchers at Google released a method to address this in the package word2vec

(Mikolov et al., 2013a). Their approach learned low-dimensional vector representations such that

mathematical operations on them reflected semantic relationships. For example, tokens that were

similar to each other (e.g., “emperor” and “king”) or found in similar contexts (e.g., “Berlin” 250

and “Germany”) had a higher cosine-similarity score (Mikolov et al., 2013a; Sanderson, 2024).

Simple algebraic operations on the vectors could also yield intuitive results: e.g. vector(“King”)
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- vector “Man”) + vector(“Woman”) resulted in a vector that was close, as calculated by cosine

similarity, to vector(“Queen”) (Mikolov et al., 2013b).

Most GPTs today learn their own embeddings as part of an end-to-end training process.255

OpenAI’s GPT-3 model, the last model for which they published architectural details, used

embeddings of length 12,288 (Brown et al., 2020).

Positional embeddings

Each token in the sequence is also mapped to a positional embedding of the same length as

the semantic embedding, which encode where the token appears in the sequence relative to other260

tokens. In early models, positional embeddings were constructed using sinusoidal functional

so that relative position was recoverable from cosine similarity (Vaswani et al., 2017) (Figure

S2). For instance, in the sequence “Every week, the little girl and boy give treats to a furry,

friendly”, the dot product of the first position (corresponding to Every) and the second position

(corresponding to week) was higher than the dot product of the first position and the fifth position265

(corresponding to girl).

As with semantic embeddings, more contemporary models (e.g., the OpenAI GPTs) learned

positional embeddings, with each position’s embedding a trained parameter (Radford et al., 2018,

2019; Brown et al., 2020). Other models (e.g., LLAMA-2) incorporated position differently,

integrating it later into the attention mechanism rather than at the input layer (Su et al., 2024;270

Touvron et al., 2023). The key intuition nevertheless remains that models seek to represent both

meaning and position.

Model inputs

Transformers generally combine semantic and positional embeddings for each token. While

the obvious approach would be to concatenate the two vectors, doing so would double the275

dimensionality and slow training. Instead, both signals can largely be preserved by adding the

embeddings together, as random vectors in high-dimensional space are nearly orthogonal. Per

this logic, the original Vaswani et al. (2017) paper proposed adding positional embeddings to the

semantic embedding at the first layer of the network. The resulting 𝑛 × 𝑑model matrix (in which

𝑑model represents the chosen length of the final vector embeddings) would be the model input. This280

has remained a standard choice, with both absolute and learned positional embeddings (Radford
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et al., 2019; Dugas, 2023). Alternatively, some models add positional embeddings into various

stages of the attention blocks (Shaw et al., 2018; Raffel et al., 2020; Su et al., 2021; Touvron

et al., 2023).

4.3. The attention mechanism 285

Once a sequence is mapped to embeddings, it is then passed into a neural network with a

transformer architecture, displayed in Figure 4. The key breakthrough in this design was using

an “attention mechanism” without recurrence (i.e., the hidden memory states as had been used

in RNNs but hindered parallelization), hence the title of the seminal paper: “Attention is All

You Need” (Vaswani et al., 2017). In this section, we describe the standard attention mechanism 290

design before moving to other aspects of the transformer.

Fig. 4. A simplified transformer architecture that takes in
a sequence of tokens as input and produces a probability

distribution over all possible next tokens as output.

Consider the text completion task used throughout this paper: “Every Sunday, the little girl

and boy give treats to a furry, friendly .” To predict the missing token, the

model must use context. Some tokens are clearly more relevant than others for guessing what

comes next. For example, “furry” and “friendly” strongly suggest that the missing token is a 295
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noun and, specifically, a pet. Conversely, tokens like “Every” or “Sunday” provide relatively little

information to guide this prediction.

The attention mechanism (Figure 5) allows a model to determine which tokens in the input

sequence are most relevant for predicting each output (Vaswani et al., 2017; Sanderson, 2024).

Importantly, these relevance weights can be computed in parallel, enabling the approach to scale300

efficiently to long sequences. Broadly, it has a similar structure to search and retrieval algorithms

that use key-value pairs and queries (Pichka, 2025). To illustrate, consider a search algorithm in

a video website. The value for each video could be the URL associated with a video, and the key

is a summary of the video contents (e.g., a title, a series of tags, or both). A query may be what a

user searches for in the search bar. For instance, a user may type in “cute cat video” as a query.305

A search and retrieval algorithm will typically calculate a similarity score between the query and

all keys stored within the database, and sort the keys by score. Finally, the algorithm will return

the value (in this case the video) associated with the key most similar to the query. When fitting

an LLM, researchers estimate parameters that allow us to define a key matrix (characterizing

what a token contains) and a query matrix (characterizing what information a token seeks, with310

the end goal of predicting the next token). The value matrix then characterizes what each token

contributes to when matched.

Mathematically, the attention mechanism computes:

Attention(X𝑛) = softmax
(
QK⊤
√
𝑑𝑘

)
V

where Q (the query matrix), K (the key matrix), and V (the value matrix) are linear transformations315

of X𝑛 (defined below). We will discuss each step of this process in the following sections.

Here is how we can understand these components (Vaswani et al., 2017; Sanderson, 2024).

The key matrix (K) encodes what information each token “contains” in its attributes that

might be relevant to other tokens’ queries. It is computed as K = X𝑛W𝐾 , where W𝐾 is a learned

parameter matrix of dimension 𝑑𝑘 × 𝑑𝑚𝑜𝑑𝑒𝑙, which we can think of as analogous to 𝜷 in a320

traditional linear model. We can also say K contains the key vector for each element in the

sequence.
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Fig. 5. The attention mechanism described in detail as a
sequence of matrix multiplication and other operations.

The query matrix (Q) encodes what each token is “looking for” in surrounding context. For

instance, the query for “friendly” might encode “looking for a noun to attach to.” It is computed

as Q = X𝑛W𝑄, where W𝑄 has the same dimensions as W𝐾 . 325

Attention scores are computed as the product QK⊤, an 𝑛 × 𝑛matrix which contains dot product

between every query vector and every key vector. Each entry (𝑖, 𝑗) measures how relevant token

𝑗 is to token 𝑖—higher values indicate greater relevance. This matrix is normalized by dividing

by
√
𝑑𝑘 , the square root of the key dimension. This normalization prevents the variance of the dot

products from growing with 𝑑𝑘 , which would cause the subsequent softmax to produce extreme 330

values. The softmax function is then applied to each row, transforming the raw scores into a

probability distribution
(
𝜙(®𝑧)𝑖 = 𝑒𝑧𝑖∑𝐾

𝑗=1 𝑒
𝑧𝑗

)
. This exaggerates large values, suppresses small ones,

and ensures each row sums to one. The resulting matrix 𝛀 = softmax(QK⊤/
√
𝑑𝑘) contains the

attention weights.

We last define one additional matrix: the value matrix (V) contains the information that will 335

be passed forward if a token is deemed relevant. It is computed as V = X𝑛W𝑉 , where W𝑉 is of

dimension 𝑚 × 𝑚.



16

Multiplying 𝛀 by V produces a weighted sum of the value vectors:

𝛀V =


𝑤11vEvery + 𝑤12vSunday + 𝑤13vthe + · · ·

𝑤21vEvery + 𝑤22vSunday + 𝑤23vthe + · · ·
...


(1)

Each row of the output is a weighted combination of all tokens’ value vectors, where the

weights reflect how much attention each token pays to the preceding token. Tokens deemed more340

relevant (via the query-key interaction) contribute more to the output.

Finally, we add this result to update the input in a “residual connection.” This helps prevent

vanishing gradients (where gradients shrink toward zero as they pass through many layers during

backpropagation, stalling learning) and allows the model to learn incremental refinements to

token representations (i.e., updating initial embeddings or results of the prior layer) rather than345

entirely new representations at each layer.

4.4. Transformer architecture

The output of each residual connection is also passed through a layer normalization step

(Vaswani et al., 2017; Sanderson, 2024). Layer normalization rescales each token’s representation

(i.e., the result of the embedding being added to the output of the attention mechanism and350

renormalized) to have zero mean and unit variance. Empirically, this improves numerical stability

and accelerates convergence during training, particularly in more complex models.

Each block also includes a feedforward network that applies the same nonlinear transformation

independently to each token’s representation (Vaswani et al., 2017; Sanderson, 2024). Unlike

the attention mechanism, which mixes information across tokens, the feedforward network trans-355

forms each representation in isolation, using the standard neural network architecture discussed

above. This allows the model to further process each token after contextual information has been

incorporated through attention. Finally, models often use another residual connection and layer

normalization after the feedforward network.

In practice, the attention mechanism is also employed in “multi-headed” setup. Rather than360

computing attention weights once, the model computes them multiple times in parallel as part of

the same attention mechanism step. For example, the original “Attention Is All You Need” paper
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used 8 heads per attention block (Vaswani et al., 2017). Each head has its own query, key, and

value matrices, producing a unique set of attention weights softmax(QK⊤/
√
𝑑𝑘). This allows

the model to capture different types of relationships between tokens simultaneously. In principle, 365

one head might learn to attend to syntactic relationships, another to semantic similarity, another

to positional patterns, and so on (although roles may not be as clean in practice to human eyes)

(Kissane et al., 2024). The outputs of all heads are concatenated and then projected back to the

model dimension 𝑑model using a learned weight matrix W𝑂. Because each head operates on a

lower-dimensional subspace (typically 𝑑𝑘 = 𝑑model/ℎ, where ℎ is the number of heads), the total 370

computational cost of multi-head attention is similar to that of single-head attention.

In addition to using “multi-headed” attention, models typically stack many such attention

blocks in sequence. GPT-3, for instance, used 96 blocks (Brown et al., 2020). Each block refines

the token representations further, allowing the model to build increasingly abstract representations

of the input. 375

4.5. Output

As its final output, the model produces an updated matrix of token representations, still of

dimension 𝑛 × 𝑚. To generate a prediction, the model focuses on the embedding corresponding

to the final token in the sequence, which we denote y𝑛. This embedding summarizes the full

context observed so far and can be interpreted as the model’s best representation of “what should 380

come next.”

The model converts this representation into a probability distribution over the vocabulary. One

approach to do this is simply to compute the dot product of y𝑛 with the embedding of every

possible token in the language (Dugas, 2023). Recall that embeddings have the property that

semantically similar tokens have large dot products. This means that this operation assigns higher 385

value to tokens whose meanings are most compatible with model’s prediction of what comes next

given context. For the example sentence

Every Sunday, the little girl and boy give treats to a furry, friendly ,

tokens such as cat or dog will have higher dot products with y𝑛 than less related tokens (such as

alligator). These can then be converted to probabilities using a softmax function. (Alternatively, 390
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models may have another step of an “unembedding” matrix, which allows this process to be a

more flexible transformation.)

To make a prediction, the model may select the token with the highest probability (greedy

decoding) or sample from this distribution, which introduces randomness and allows for more

diverse text generation. A temperature parameter controls how concentrated the distribution is:395

lower temperatures sharpen the distribution toward the highest-probability tokens, producing

more deterministic outputs, while higher temperatures flatten it, introducing more randomness

(Peeperkorn et al., 2024).

4.6. Model size

So, how many parameters does an LLM have? Consider a single head of attention operating on400

a sequence of 𝑛 tokens with embedding dimension𝑚. The three weight matrices have dimensions

(Vaswani et al., 2017):

dim(W𝑄) = dim(W𝐾 ) = 𝑚 × 𝑑𝑘 (2)

dim(W𝑉 ) = 𝑚 × 𝑑𝑣 (3)

where 𝑑𝑘 and 𝑑𝑣 are the dimensions of the query/key and value vectors respectively. A single405

head thus contributes 2𝑚𝑑𝑘 + 𝑚𝑑𝑣 parameters.

In many LLMs like GPT-3, 𝑑𝑘 = 𝑑𝑣 = 𝑚/ℎ, where ℎ is the number of heads (Radford et al.,

2019; Brown et al., 2020). In this case, the total parameters across all ℎ heads for the 𝑚 × 𝑚/ℎ-

dimensional Q, K, and V matrices is 3𝑚2. An additional matrix W𝑜 of dimension𝑚 × 𝑚 combines

the conjoined head outputs. The attention mechanism therefore contains 4𝑚2 parameters per410

block. The feedforward network added further parameters. In GPT-3, two layers with an inner

dimension of 4𝑚 contributed 8𝑚2 parameters (Brown et al., 2020). Thus, each of the 𝑏 blocks

has 12𝑚2 parameters, yielding a total count of roughly 12𝑚2𝑏.

The resulting models are enormous, due to large embeddings and a deep stacks of blocks.

GPT-3 used 𝑚 = 12,288 and 𝑏 = 96, totaling about 12𝑚2𝑏 = 174 billion parameters. Token and415

position embeddings contributed to the final tally of 175 billion parameters (Brown et al., 2020).

Llama 3.1, released by Meta in 2024, is over twice as large. With 16, 384-dimensional embeddings
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and 128 blocks, it totals 405 billion parameters (Grattafiori et al., 2024). DeepSeek’s V3 model

contains over 600 billion parameters; GPT-4 and GPT-5 are rumored to be significantly larger.

4.7. Training LLMs 420

Training LLMs is feasible for several reasons (Vaswani et al., 2017). First, the core operations

in a transformer, matrix multiplications and element-wise nonlinearities, can be parallelized.

Second, training examples can also be processed in parallel batches, allowing gradients to be

computed across many examples simultaneously. Third, modern GPUs (particularly those from

NVIDIA) are optimized for exactly these operations, with training distributed across thousands 425

of GPUs simultaneously.

The primary computational bottleneck is the attention mechanism. Computing QK⊤ produces

an 𝑛 × 𝑛matrix, meaning that computational and memory costs scale quadratically with sequence

length. This is why models specify a maximum context window, the total number of tokens the

model can process at once. A model’s context window determines how much text it can “see” 430

when generating a response and, in a chat conversation, includes both user input and prior

responses. When generating each token, the model considers everything within this window;

information beyond it is effectively invisible, as users may encounter when a model appears to

forget information from the start of a long conversation.1

Training typically consists of 3 training phases: pre-training, supervised fine-tuning, and pref- 435

erence learning. This pipeline was standardized by the InstructGPT paper, an important step

preceding the release of ChatGPT (Ouyang et al., 2022; Stanford Online, 2024).

Pre-Training

The first phase of training LLMs is pre-training on vast amounts of data, typically massive

corpus of text, comprising books, websites, code repositories, and other webpages. Because pre- 440

training is self-supervised, it does not require labeled data, so any reasonable piece of text may

be included in the training corpus; the model simply predicts each next word given the prior

sequence. A major innovation of GPT-3 over its predecessor was scaling pre-training: It trained

on 300 billion tokens, an order of magnitude bigger than GPT-2 (Radford et al., 2019; Brown

1 As an alternative to GPTs, Mamba is a state-space model whose complexity is linear, rather than quadratic in the sequence length
(Gu & Dao, 2023). Although promising, it generally underperforms GPTs; a detailed description is beyond the scope of this work.



20

et al., 2020). This scaling has only since continued, with contemporary LLMs pre-training on445

trillions of tokens (Chowdhery et al., 2022; Grattafiori et al., 2024; Deepseek, 2025). Llama 4

claims to use a staggeringly large dataset of 40 trillion tokens (Meta, 2025).

Data curation is an important part of pre-training, and not all pre-training data is equally

valuable. For example, academic papers may be higher-quality text than commercial websites

(though some may reasonably disagree), and might be upsampled accordingly. In addition, not450

all text that can be scraped should be used to pretrain a model. Internet datasets are rife with

offensive or dangerous content, which researchers attempt to filter out. Models trained on such

data are known to learn such behaviors. GPT-3 was found to produce racist, sexist, and violent

text based on patterns learned in its pre-training (Brown et al., 2020).

Supervised Learning455

Supervised learning adapts a pre-trained model for a range of different tasks. This phase often

uses labeled data, with a prompt and a human- or machine-labeled output. Because labeled data

are scarce, the total dataset used for supervised fine-tuning is small compared to the pre-training

corpus. Pre-training data accounted for 98% of the text used to train InstructGPT (Ouyang et al.,

2022).460

Pre-trained models are fine-tuned on several tasks at once, each with their own labeled datasets.

Tasks might include question answering, document summarization, machine translation, open-

ended generation, and rewriting. In the pre-LLM era, models would be trained directly on these

datasets. However, pre-training improved performance substantially as it instilled a deep sense of

linguistic fluency, background knowledge, and perhaps some degree of reasoning ability. Hallu-465

cinations are thought to arise from fine-tuning, as models learn to produce assertive responses

even when relevant information was absent from pre-training (Huang et al., 2025; Kalai et al.,

2025).

Preference Learning

The third stage, preference learning, is another round of fine-tuning. This phase is responsible470

for much of the “personality” of modern chatbots, including their confident tone, sycophancy, and

tendency toward helpfulness (Ouyang et al., 2022). It was a major breakthrough in the transition

from GPT-3 to ChatGPT.
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The first preference learning procedure introduced for LLMs was reinforcement learning

from human feedback, or RLHF. Originally demonstrated in robotics (Christiano et al., 2017), 475

RLHF was applied to language models at scale in InstructGPT (Ouyang et al., 2022). In RLHF,

human raters compare different model outputs and indicate which response is preferred. These

preferences are used to train a reward model that predicts human approval. The language model

is then fine-tuned to maximize this reward.

The leading alternative to RLHF is Direct Preference Optimization (Rafailov et al., 2024). 480

DPO obviates the need for a reward model and RL training. It fine-tunes the LLM directly on

the preference data, maximizing the likelihood that the winning responses are preferred. This

approach is computationally cheaper and easier to execute, and thus has become common in

practice.

More recently, researchers have explored reinforcement learning with verifiable rewards, for 485

instance, training models on mathematics or coding problems where correctness can be checked

automatically, reducing reliance on human judgment (Guo et al., 2025).

4.8. Why Are Models Getting So Much Better?

The prior sections have characterized the general structure of LLMs, but models have drastically

improved over the past few years. Here, we outline the factors contributing to this, with the aim 490

of helping readers to understand bottlenecks and anticipate how future models may evolve.

First, models have improved as they have become larger, both in parameter count and training

data. GPT-3’s 175 billion parameters represented a hundred-fold increase over GPT-2 (1.5 billion)

and a thousand-fold increase over GPT-1 (117 million) (Radford et al., 2018, 2019). Subsequent

models have continued this trend; the largest publicly documented models now exceed 400 billion 495

parameters (Grattafiori et al., 2024). Researchers have also become better at optimizing the ratio

of model parameters to training data (Hoffmann et al., 2022). For example, GPT-3 was discovered

to have an insufficient number of training points relative to its parameter size.

Second, context windows have expanded dramatically. The original transformer had a context

window of 512 tokens (Vaswani et al., 2017); GPT-2 extended this to 1,024 tokens (Radford et al., 500

2019), GPT-3 to 2,048 tokens (Brown et al., 2020), Llama-3 to 128,000 tokens (Grattafiori et al.,
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2024) and Gemini reporting up to 10 million in experiments (Team et al., 2024). This expansion

increases the model’s effective working memory and allows it to perform better in longer con-

versations. Because context window size remains a key factor affecting both performance and

computational costs, strategies have been developed both to speed computation (e.g., developing505

optimization methods that make attention faster on modern hardware (Dao et al., 2022) and im-

prove performance with a given limit (e.g., summarizing or ”compacting” of earlier conversation

history to reduce token count or using retrieval systems that fetch relevant information on demand

rather than keeping everything in context).

Third, the introduction of intermediate reasoning steps, often called chain-of-thought prompt-510

ing or extended thinking, has substantially improved performance on complex tasks (Wei et al.,

2022). This involves generating intermediate reasoning steps before producing a final answer and

allows models models to tackle multi-step problems that would otherwise exceed their capabil-

ities. This technique has proven particularly effective for mathematical reasoning (Guo et al.,

2025). Interestingly, it performs well even when models are not actually using the reasoning they515

are stating within intermediate steps (Lanham et al., 2023; Chen et al., 2025).

In addition to direct model improvements, users have also benefited from improvements in

supporting architecture, including document processing, integrated code execution environments

that make it easy to check computations, and structured output formatting. Still, some challenges

persist; for example, when reading PDFs, layout, tables, and multi-column formatting may be lost520

or misinterpreted during text extraction.

Overall, these improvements have translated into dramatic gains in real-world performance.

METR, an AI safety organization, proposed measuring model capabilities by the length of

tasks models can complete autonomously with 50% reliability, where task length is defined by

how long a task takes human professionals (Kwa et al., 2025). By this metric, frontier model525

capabilities have rapidly improved on software engineering tasks, with task length doubling

approximately every seven months from 2019 through early 2025. As of late 2025, Claude

Opus 4.5 achieved a time horizon of nearly five hours (METR, 2025). Notably, the models and

configurations available to the public at any given time likely understate the frontier: major AI

laboratories typically have more capable models in development that have not yet been released,530
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deploy longer context windows internally than are publicly available, and support customized

agent setups that outperform out-of-the-box tools. Scaling laws suggest that model performance

improves predictably with increases in data, parameters, and compute (Kaplan et al., 2020), and

labs continue to invest heavily in all three. While the future remains uncertain, researchers can

anticipate continued substantial growth in model capabilities. 535

5. Conclusion

This paper demonstrates that increasingly popular and powerful GPTs can be understood

as extensions of familiar statistical tools: like OLS and GLMs, they estimate parameters by

minimizing a loss function; like other neural networks, they chain nonlinear transformations to

model complex relationships. The key innovations enabling modern text generation, tokenization, 540

learned embeddings, and the attention mechanism, address the specific challenges of representing

language and capturing dependencies across sequences. Understanding these foundations has

practical value: researchers who grasp that models predict probability distributions over tokens,

rather than retrieving facts from a database, are better positioned to anticipate failure modes like

hallucination; those who understand context windows can structure prompts more effectively; 545

and those who recognize that fine-tuning shapes behavior through human feedback can better

interpret why models respond as they do. For other applications, some model APIs provide

the predicted probabilities for output tokens, offering researchers a familiar statistical object to

quantify uncertainty, assess model confidence, or construct more principled decision rules, and

GPTs may also be applied outside text prediction. As LLMs become more integrated into research 550

and society, continued engagement between researchers and the underlying methodology will help

ensure these tools are applied appropriately and their limitations understood.
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A. Appendix

Fig. S1. Sigmoid and ReLU activation functions are both
popular for neural networks. While a sigmoid activation
function, which is differentiable (left), a ReLU function
contains a ”kink”, below which the value is zero, and the

function is linear above the kink.

Fig. S2. Positional embeddings, calculated such that the
dot product between two embeddings is proportional to the

distance between the two positions.
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