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Abstract

Difference-in-differences (DiD) approach is one of the most widely used approaches for
evaluating policy effects. However, traditional DiD methods may not recover the popula-
tion-level average treatment effect on the treated (ATT) in the absence of population-level
panel data, particularly when the composition of units in the treatment group changes over
time. In this work, we address the following two challenges when applying DiD methods
with repeated cross-sectional (RCS) survey data: (1) heterogeneous compositions of study
samples across different time points, and (2) availability of data for only a sample of the
population. We introduce a policy-relevant target estimand and establish its identification
conditions. We then propose a new weighting approach that incorporates both estimated
propensity scores and given survey weights. We establish the theoretical properties of the
proposed method and examine its finite-sample performance through simulations. Finally,
we apply our proposed method to a real-world data application, estimating the effect of a
beverage tax on adolescent soda consumption in Philadelphia.
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1 Introduction

Understanding the real-world impact of policies is crucial for designing effective interven-
tions. However, in the absence of randomized interventions, it can be difficult to identify
appropriate comparison groups. Difference-in-differences (DiD) is a widely used causal
inference method for estimating policy effects (Abadie 2005; Angrist and Pischke 2009).
Unlike other common causal inference methods for observational studies, DiD does not
require that treated and control units have comparable average potential outcomes given
covariates. Instead, it relies on the assumption that, in the absence of the intervention, con-
trol units would have comparable changes in average outcomes over time as the treated
units. This assumption is known as the counterfactual parallel trends assumption, as we do
not observe the outcome changes for the treated units in the absence of intervention.

The DiD approach has been predominantly used in panel data settings, often imple-
mented with a two-way fixed effects regression that adjusts for unit (or group) and time
effects (Angrist and Pischke 2009; Imai and Kim 2019). However, in recent years, there
has been an increased number of studies evaluating interventions using DiD with repeated
cross-sectional (RCS) survey data, where survey samples are taken from potentially hetero-
geneous populations across multiple time points (e.g., Rao et al. 2014; Howe et al. 2016;
Cerda et al. 2017; Edmondson et al. 2021). This may be due to the fact that, compared to
panel data—which require following the same units over time—studies using RCS survey
designs often capture a broader range of the population. This can improve the generaliz-
ability of the policy effect.

1.1 Motivating data application

Our motivating data application aims to evaluate the effect of the Philadelphia beverage
tax on soda consumption among high school students. On January 1, 2017, Philadelphia
increased the excise tax on sugar-sweetened and artificially-sweetened beverages with the
objectives both to generate revenue and reduce the consumption of these drinks. While
several previous studies have investigated the effect of the beverage tax policy on sales and
prices (Powell and Leider 2020; Roberto et al. 2019; Cawley et al. 2020), subgroup analy-
ses using individual-level data (rather than aggregate sales data) are needed to understand
which groups of individuals actually reduced soda consumption. Our study focuses specifi-
cally on high school students.

To apply DiD approaches, outcome trends over time are typically used for identification.
However, with high school students’ soda consumption as the primary outcome of interest,
defining these trends among high school students is not straightforward. Transitions from
middle school to high school and from high school to adulthood likely occur at different
times for high school students at a given time point, either before or after the interven-
tion. This variation can easily lead to heterogeneity in the composition of the study sample
over time and complicate sample recruitment, whether we follow the current high school
students retrospectively or prospectively. As a result, we utilize RCS survey data from the
Youth Risk Behavior Surveillance (YRBS) System instead of panel data.

The YRBS has conducted national, state, and large urban school district surveys on health-
related behaviors and experiences for students in grades 9—12 biennially since 1991 (Kann
2018). Using such data raises several questions before applying DiD approaches: first,
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how should we define outcome trends, potentially conditional on baseline covariates, with
samples collected at different time points? With survey samples, should the counterfactual
parallel trends assumption apply to the outcomes observed in the samples, or to those that
would be observed in the broader target population?

1.2 Challenges in using repeated cross-sectional survey data

One of the fundamental challenges in using RCS survey data to evaluate policy effects is
the ambiguity in defining the target population. The target population in DiD studies often
consists of units in the treatment group, focusing on the average treatment effect on the
treated (ATT). In panel data, the composition of the treatment group remains consistent
across time periods, both before and after the intervention. In contrast, with RCS survey
data, units in the treatment group who were actually affected by the intervention (e.g., high
school students in Philadelphia who participated in the survey after the city implemented a
tax policy) are not necessarily the same as those observed in the treatment group before the
intervention. If the intervention effect varies depending on certain covariates (i.e., if effect
heterogeneity exists), and if the distribution of those covariates differs across survey partici-
pants collected at different time points, then the target population on which the intervention
effect is evaluated will affect our causal estimates.

In our context, we have two metrics to choose to define the target population: (1) whether
we aim for sample-level or population-level treatment effects; and (2) whether we target
the samples (or the population) collected at pre- or post-intervention periods, or both. Each
of these considerations has been nuanced in the previous literature. Moreover, many DiD
approaches using survey data do not account for the survey design, which may restrict the
target population to the observed sample (e.g., Su et al. 2019; Wang et al. 2023; Su et al.
2023). Some studies simply apply two-way fixed outcome regression models with survey
weights (Edmondson et al. 2021), but it remains unclear how the two-way fixed-effects
models address heterogeneity in composition across different time points and treatment
groups.

There is a few recent research on DiD approaches with RCS survey data. Stuart et al.
(2014) proposed incorporating propensity scores into DiD outcome models to balance the
characteristics between different groups defined by the treatment group and the time points
(treatment vs. control, pre- vs. post-intervention). Sant’Anna and Xu (2023) further devel-
oped non-parametric DiD estimators for the ATT with doubly-robust properties, account-
ing for compositional changes in RCS data. They showed that many of the proposed DiD
estimators lose their desirable properties (e.g., double-robustness) under compositional
changes (Hong 2013; Ryan et al. 2015; Oduse et al. 2021; Klootwijk et al. 2024). These
approaches assume that the study sample is randomly selected from the population of inter-
est. On the other hand, our work considers cases where the study sample is a probability
sample from the population of interest. In causal inference literature, several studies have
discussed incorporating known survey weights into propensity scores (Ridgeway et al.
2015; Dong et al. 2020; Yang et al. 2023), and this approach has been incorporated in DiD
settings. Han et al. (2017) used the propensity score-weighted DiD estimators and adjusted
survey weights in each estimator, but their approach is based on the panel data, where pro-
pensity scores are not intended to account for compositional changes over time. Dwomoh
et al. (2020) used the sampling weights both in the propensity scores model and the outcome
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model. However, it is unclear how they adapted propensity score methods to account for
compositional differences over time, as they grouped units collected before and after the
intervention together.

1.3 Outline of the paper

In this work, we propose a new propensity score-weighted DiD estimator for RCS survey
data. Specifically, our proposed estimator uses propensity scores to adjust for compositional
changes over time, while incorporating the given survey weights to infer the target estimand
defined at the population—rather than sample—Ilevel. The remainder of this paper is struc-
tured as follows. Section 2 formally establishes our research question and defines our target
estimand. We illustrate our proposed estimator followed by a series of causal assumptions
in Sect. 3. Section 4 demonstrates the performance of the proposed methods in our simu-
lated data and Sect. 5 applies the method to the real-world data. Lastly, Sect. 6 discusses the
potential limitations and the future research directions.

2 Setting and notation
2.1 Notation

Consider a population of size N. Let i index individual units and ¢ denote the time points
(t=12,...,N; t=0,1,...,T —1). For simplicity, we consider two time periods (i.e.,
T = 2), with t = 0 as the pre-intervention period (i.e., year 2015) and ¢ = 1 as the post-
intervention period (i.e., year 2017). Let D, denote membership in the treatment group, i.e.,
D; = 1 if unit i belongs to the treatment group (e.g., Philadelphia) and 0 (e.g., other six con-
trol cities) otherwise. In this work, we view that the treatment group (e.g., cities) is a random
variable for each unit rather a fixed, pre-defined group. This perspective allows us to avoid
correlation among units in the same treatment group simply because they always share the
same treatment status. Let R; represent the time at which unit i is observable. For instance,
R; = 0 ifunitis a high school student at t = 0, and R; = 1 if unit i is a high school student
at t = 1. Assume that R, can take only one value from 0 and 7" — 1. This may not neces-
sarily hold if overlaps in samples across multiple time points are allowed (e.g., students
sampled in 2015 also appear in the 2017 sample. In such cases, where the same unit can be
included multiple times, variance estimation must account for within-unit correlations. Let
Z;¢ indicate the treatment status at time ¢, where Z;; = 1 if unit i is treated at time ¢, and
Z;: = 0 otherwise. A variable Y;; is the outcome of interest for unit i at time ¢. Let X; € R?
be a vector of time-invariant covariates of unit 7, measured before the intervention.

Given that the compositions of treated and control groups vary across different time
points in RCS data with 7" = 2, we can categorize units into four distinct groups: the treat-
ment and control groups at each of pre-intervention (i.e., ¢ = 0) and post-intervention (i.e.,
t = 1) periods. We introduce a variable G; to denote these groups.
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In our motivating data example, units with G; = 1 refer to Philadelphia high school stu-
dents in 2015, while those with G; = 2 refer to Philadelphia students in 2017. Units with
G; =1 and G; = 2 form the treatment group together (i.e., D; = 1); however, only those
with G; = 2, who are observable during the post-intervention period (i.e., at t = 1), actu-
ally receive the treatment. Although those with G; = 1 do not actually receive the treatment
since they are only observable during the pre-intervention period (i.e., at t = 0), they are
essential for constructing the trends within the treatment group. Similarly, in our motivating
data example, units with G; = 3 refer to high school students in control regions in 2015,
while those with G; = 4 refer to students in control regions in 2017. The control group
consists of units with G; = 3 and G; = 4 (i.e., D; = 0), and both of these groups are used
to construct the trends for the control group. Let V denote a sample space for any variable
V; for example, in the case of a variable G denoting group membership, G = {1,2,3,4} in
this setting. Let I(-) denote the indicator function.

Lastly, because we do not observe the entire population of size N in survey sample, we
introduce a variable S; to indicate whether unit i is sampled from the population. Let n
denote the sample size in the survey data, i.e., n = Zﬁ\;l S;. This setting raises important
questions about whether and how the counterfactual parallel trend assumption should be
modified in the context of an RCS survey sample. For example, should we consider the
outcome trends among only those who are sampled? The answers to these questions depend
on the target estimand.

2.2 Target estimand

We introduce a potential outcomes framework (Holland 1986) to clarify our target estimand
and establish identification conditions. Let Y;} be a potential outcome under treatment and
Y,? be a potential outcome under control for unit i at time ¢. In policy evaluation, the ATT is
a common target estimand, which is defined as follows.

E(Y; - Y3 | D;=1). )

The expectation is taken across units over the entire population rather than sample. In (2),
the target population includes those who are observable in either the pre- or post-interven-
tion periods. Instead, we set our target population as units with G; = 1, i.e., the treated units
observable in the pre-intervention period.

We define the target estimand 7, the average treatment effect on the treated at the pre-
intervention period, as follows.

T=E(Y]-Y}|Gi=1). 3)

The two treatment effects defined in (2) and (3) can differ when units with G; = 1 (e.g., Phil-
adelphia high school students in 2015) systematically differ from those with G; = 2 (e.g.,
Philadelphia high school students in 2017), both on observed and unobserved factors. This
is because units with D; = 1, which is conditioned on (2), include a mix of those with
G; =1 and G; = 2. Specifically, if the distribution of covariates differs between those
with G; = 1 and G; = 2, and the treatment effect varies based on those covariates, then
the two effects in (2) and (3) can be different. Even though we focus our target on units
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with G; = 1, our proposed framework can be easily applied to E(Y;} =Y | G; = g)
with any g € G. For example, as in the case similarly considered in Sant’Anna and Xu
(2023), we can consider E(Y;} — Y9 | G; = 2). However, when our target population
involves a group observable in the post-intervention periods (e.g., those with G; = 2), we
may require less stringent assumptions than in cases involving groups observable in the
pre-intervention periods (e.g., those with G; = 1), as the potential outcome Y} is observ-
able for those with G; = 2. If the estimand involves treated units across all treated popula-
tion, as in Eq. (2), it can be expressed as a weighted average of group-specific effects, e.g.,
EYi-Y |Gi=1)Pr(Gi=1|D;i=1)+E(Y; Y] |G =2)Pr(G;=2|D;i=1)

Another important note here is that the expectations in (2) and (3) are taken over N
population rather than n selected samples. If we do not account for the fact that our observa-
tions are a probability sample from the larger population and then directly apply the DiD
approach to the sample, we end up estimating E(Y;} — Y | G; = 1, S; = 1) at best. This
effect, in our motivating example, refers to the effect on Philadelphia high school students
who participated in the survey in 2015. However, for broader policy implications beyond
the sample, what we may aim to make an inference on could be the effect on the treated units
of the entire population from which the survey sample was taken.

We expect that, with RCS, the counterfactual parallel trends assumption, typically used
with panel data observed over time, requires some modifications. Suppose that the survey
samples are representative, so that E(Y) | G; = ¢,5; =1) =E(Y} | G; = g) for g € G.
In that case, we can simply consider the following (unconditional) counterfactual parallel
trends assumption between the treatment and control groups.

E(Y; |Gi=2) -E(Yg | Gi=1) =E(Y]] | Gi = 4) - E(Yj | Gi = 3). 4)

In Eq. (4), the three conditional expectations are observable except for E(Y) | G; = 2);
for example, we do not observe the outcome in the absence of intervention for Philadelphia
high school in 2017. Therefore, we require an additional assumption that G; is ignorable
within the treatment group—for example, that E(Y}] | G; = 2) = E(Y}} | G; = 1). In the
next section, we formally introduce the identification assumptions.

3 Method

In this section, we first establish the assumptions required to identify 7 in (3) and then
propose the inverse probability weighted DiD estimator. For simplicity, we illustrate the
methods given four groups defined in (1) with 7" = 2. However, the assumptions can easily
generalized to the case with ' > 2.

3.1 Assumptions

Assumption 1 (Consistency)

Yi = Yil(Ziyy = 1) + YII(Ziy = 0).

@ Springer



Health Services and Outcomes Research Methodology

Assumption 2 (Stable Unit Treatment Value Assumption (SUTVA)) For any treatment level,
there is only one version of that treatment. A potential outcome for any unit is not affected
by the treatment received by any other unit (no interference).

Assumption 3 (Positivity) Forall g € Gand x € X.

0<PT(G1:Q|XZ:X7SZ:1)<1

Assumptions 1 and 2 allow us to connect the observed outcomes to the potential outcomes
under either treatment or control. The positivity assumption in our contexts applies to
groups G; rather than D;, given that units are in the sample (i.e., conditional on S;=1).
These assumptions are standard in causal inference literature.

Assumption 4 (Counterfactual parallel trends assumption) Forall g, ¢’ € Gand x € X.
E(Y]] - Y | Xi =x,G;=g) =E(Y}] - Yy | Xi =x,G; = ¢). ®)

The above assumption implies that, conditional on X, the outcome trends between the pre-
and post-intervention periods are equivalent across groups. Unlike in panel data, where both
Y,? and Y are observable for controls, here we observe at most one of them for any group
in G. Therefore, we require the following assumption.

Assumption 5 (Group independence and ignorability)

Gl S| X
G (Ylla Yloa YEJO) | X7 D

Note that the first condition in Assumption 5 implies that Pr(G; = ¢ | X;,S; = 1) will be
equivalent to Pr(G; = g | X;). The second condition of Assumption 5 implies exchange-
ability of the potential outcomes between groups within the same treatment group (e.g.,
Philadelphia high school students sampled in 2015 and 2017), conditional on X. While
they may appear redundant—potentially reducing the appeal of using DiD approaches—this
ignorability assumption is required only within the same treatment group by conditioning on
D. This allows us to leverage observable outcome samples from different time points within
the same treatment group. In other words, we can establish the following parallel trends:

E(Y] [ X =x,G;=2) - E(Y) | Xi =x,G; = 1)
=BV | Xi =x,Gi =4) —E(Y{) | X; = x,G; = 3).

However, none of the conditional expectations above are identifiable as we only observe the
potential outcomes of units in the survey sample.

Assumption 6 (Ignorable sampling)

s (LY YY) | X, G (6)
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Assumption 6, a standard assumption in causal inference with survey designs, then leads to
the parallel trends in the potential outcome trends that are identifiable:

EYS|Xi=x,G; =25 =1)-E(YQ|Xi=x,G;=1,8;=1) @)
=BV [ Xi=x,Gi =4, =1) - BV | X; =x,G; =3,8 = 1).
As is common in panel data DiD approaches, one can assess the plausibility of Eq. (7)
by testing outcomes in the pre-intervention period (Gibson and Zimmerman 2021; Roth
2022)—for example, by comparing outcomes for both the treatment and control groups
across two consecutive time periods before the intervention. However, such tests do not
guarantee that the trends observed in the pre-intervention period will continue afterward.
Finally, we can represent our target estimand 7 as the difference in differences of the
identifiable conditional expectations.

7 =Exje=1 {E(Yii -V | Xi =x,Gi = 1)}
= Exjo—1 {E(Yi - V3 | Xi =x,G; = 1,5, =1)}
= Exjo=1 {E(V;1 -V | Xi =x,G; = 2,5, = 1)}
=Exjo=1 {E(Y;) | Xi =x,G; = 2,5, = 1)}

—Exjo—1 {E(Y}) | Xi =x,G; =1,5=1)}

EXG=1{E(Y£ | X, =x,G; =4,5, = 1)}
- EX|G=1{E[Yi% | X, =x%x,G; =3,5;, = 1]}]

An important consideration is that for units with G; = 2 or G; = 4, who are observable in
the post-intervention periods, baseline covariates X,; not affected by the intervention may
not be fully available in real data applications. For example, for high school student par-
ticipants in the 2017 survey, BMI information measured before the intervention might be
unavailable. In such cases, we may need to rely only on time-invariant demographic infor-
mation, such as race/ethnicity. In practice, this limited availability of baseline covariates
can undermine Assumptions 3—6 when conditioning only on a small number of available
baseline covariates.

3.2 Propensity scores with survey weights

In this section, we introduce an new estimator for 7 in (3) that incorporates both the esti-
mated propensity scores and the survey weights. The purpose of using propensity scores is
to adjust for compositional changes over time (Stuart et al. 2014), while the given survey
weights are used to ensure that each sample accurately represents the target population.

In our contexts, propensity scores are the probability of being assigned to group g given
the baseline covariates of x within the survey population (i.e., conditioning on S; = 1):
eq(x) = Pr(G; =g | X; =x,5; =1) across g € G and for x € X. As this is the prob-
ability based on the survey, it can be estimated, such as using multinomial logistic regres-
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sion with survey participants, considering that G may contain more than two groups. On the
other hand, survey sampling probability p(x) := Pr(S; = 1 | X; = x) refers to the prob-
ability of being selected into the sample from the population, conditional baseline covariates
x € X. Although the same set of covariates X is conditioned on in both the group assign-
ment and sampling mechanisms, it is not necessary for each covariate in X to be correlated
with both, as long as X provides a sufficient set of covariates that satisfies the assumptions
in Sect. 3.1. By taking the inverse of the probability of being selected, sampling weights
ensure that each participant is appropriately represented in the analysis. This adjustment
involves up-weighting participants who were less likely to be selected into the sample and
down-weighting those more likely to be selected.

Combining the estimated propensity scores €,(x;) with the known survey sampling
probability p(x;) together across survey participants, we weight each participant i with .S;
=1in group g € G by:

{e1(xi)/(eg(xi)} x (1/p(xi)).

The first component of the combined weight, €1(x;)/€4(x;), adjusts for compositional dif-
ferences in group g to the sampled group of g = 1, given our target population consists of
units with G = 1. This is similar to the propensity score weight used for the ATT, where
each subject in the control group is weighted by the ratio of the probability of being treated
to the probability of being in the control group. However, the first component, which uses
the estimated propensity score, adjusts the covariate distribution to match the treated group
in the sample (e.g., high school students in Philadelphia who actually participated in the
survey in 2015). To reflect their sampling probability, the second component of 1/p(x;) is
added to the combined weight.

We demonstrate in the following theorem that this weighted estimator is consistent when
the propensity scores are correctly specified. This is because the combined weight accounts
for covariate imbalance and survey sampling.

Theorem 1 Under Assumptions 1-6, with correctly specified €4(x), the following
results hold for four combinations: (g,t,z,d) =(1,0,0,1), (g,t,2,d)=(2,1,1,1),
(9,t,2,d) =(3,0,0,0), and (g,¢, 2z,d) = (4,1,0,0).

oI Sil(Gi = )@ (x:) {8 (x)p(x:)} Vit N X D —ds —
SV S.1(Gr = 1)/p(x) — Exjg=1 {E(Yj; [ Xs =x,D; =d, 5 =1)}.

Based on the results of Theorem 1, we can construct the IPW estimator for 7 in a DiD form.

Corollary 1 Under Assumptions 1-6, the following estimator ’T}pw is a consistent estimator
for 7 in (3), when €, (x) is correctly specified (g € G).

A = ! o~ SIG =20 (X)), g SHG=1)
TSN S(Gs = 1) /p(xe) [Z_; aXopX) ; oK)

N SI(G; = 4)8(Xs) Si(G; = 3)81(X,)
_ {Z €4(X1)p(X,) Yét - Z X- Yit

=1
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More details and proof of this estimator can be found in Appendix Al.

4 Simulation studies
4.1 Simulation settings
In this section, we demonstrate the finite sample performance of the proposed estimator,
Tipw in (8), using the simulated RCS survey data. We consider total population of size N

(=500, 1000, 2000). We compare our proposed estimator Tipyw with other two IPW estima-
tors, Tpw and Tew:

N
~ 1 S.LH(G7 = 2 81
" 1y lz ey T ZS 1

é SI(G; =1) Li=t 2
- {i SZH(G% (;z)el(x )y, _ i 5711(G€;§z)el(x )Yn}
~ -~ Sil(Gi = 2)
o zé SlH(Gz‘l 2)/p(x:) ; : Hp?Xi) 2 "
1 XN: SH;()?XT Dy

N
> S1(Gy = 1)/plox) T

ZN:SJI
Ellsﬂ(Gfél/px, , Yi

iszﬂ . =3)
211511 -—3/pxl : p(Xi) i

In Appendix Al, we demonstrate that under the same conditions in Cor-
ollary 1, 7,w and T converge to E(Yi-Y9|G;=1,8=1) and
E(YY|Gi=2)—E(YQ |G =1)—{E(Y] | G; =4) —E(Y) | Gi = 3)}, respectively.

We generate the baseline covariates X; = (X1, X;2, Xi3, Xi4), survey inclusion indica-
tor S;, and the group membership indicator G; as follows, independently across i:

v e (@) 1),
X3 ~Bernoulli(0.5),
X4 ~Uniform(0, 1),
S; ~Bernoulli(logit ! (1o + 71 X1 + 12 X2 + 13Xz +12Xu)),
G; ~Multinomial(d1(X;), d2(X;), 05(X;), d4(X;)),
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where (Sg(X1) = EQ(XZ)/Z;%:l ZQ(XZ) with Z(X) = ((1(X1)7éQ(XZ),gg(XZ),&l(XZ))

= (1,exp(Y20 + gy v2k@h)s  exp(130 + Sopey V3hTk) exXD(Va0 + S gy Yarr)) T
following a multinomial model. We set the parameter values as follows. For the survey sam-
pling probability, weusen = (0.5,0.5, —1.0, 1.0, 0.0)". For the group assignment model, the
parametersarespecifiedasy, = (1, —0.5,-0.5,0.0, —=1.0)7, v3 = (0.0,1.0,0.2,0.5,0.5)7,
and v, = (-1,0.5,1.0,0.0, —0.5)T. Under this setting, covariate X, affects the group
assignment but not survey sampling.

The potential outcomes are generated according to the following linear relationships for
eachi (=1,...,N)andt (=0,1),

YY) = 0.5X;1 + 0.05X;5 4+ 0.2X;3 4 0.15X 4 + D;
+ 05H(t = ]') + €, €~ N(()? 1)7
Y=Y 4+1405X;; —0.3X;5 + 0.5Xs5.

The above models incorporate a treatment group-specific outcome intercept
(D; =1(G; < 2)), a time trend (0.5I(¢t = 1)), and the treatment effect heterogeneity by
X, while satisfying the counterfactual parallel trends assumption and group ignorability.
For each estimator, including our proposed Tipw, we calculate the variance using bootstrap
methods, taking advantage of the independence among survey participants sampled across
different years, in contrast to panel data. We replicate each simulation setting 500 times, and
use 100 bootstrap samples for each time.

4.2 Simulation results

We first investigate the role of both propensity score-based and survey sampling probability-
based weighting in reducing imbalances in observed baseline covariates. Table 1 presents
covariate (im)balance measures, reported as standardized mean differences (SMD), for each
covariate in (X1, X2, X3, X4), comparing the target population with G =1 to the popu-
lation under each weighting scheme. When the sample is not weighted (“Unweighted”),
substantial imbalance exists across the covariates. Weighting by propensity scores only
(“PS-weighted”) or by sampling weights only (“SW-weighted”) somewhat reduces this
imbalance. However, when the sample is weighted by both propensity scores and sampling
probabilities (“(PS+SW)-weighted”), the SMDs are reduced to near zero across all covari-
ates, demonstrating the effectiveness of our proposed weights in addressing heterogeneity
across both treatment groups and survey samples.

Table 2 presents the bias, root mean squared error (RMSE), average length of 95% boot-
strap-based confidence intervals, and the coverage rates for 95% confidence intervals for
Tipws Tpws and Tew, when our target estimand is 7 as defined in Eq. (3). The bias, RMSE,
and confidence interval lengths are averaged over 500 replicates. For coverage, we present
the results based on the Monte Carlo variance across 500 replicates (CRpyc) and the boot-
strap variance within each Monte Carlo experiment (CRpoot). The results show that our
proposed estimator, Tipw, exhibits decreasing bias and RMSE, along with approximately
nominal coverage rates. The bootstrap-based coverage rates are reasonably well-behaved
as the Monte Carlo variance-based coverage rates. However, the bootstrap variance tends
to be slightly conservative when the population size is relatively small. The estimators Tpw
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Table 1 Average standardized N Weighting scheme X X X5 X,

zz‘;‘lglfgerri?;‘;zgiﬁls)s);g‘gr‘;u_ 500  Unweighted ~040(0.12) 026 —-021 0.09
©.11) (0.11) (0.11)

cates for each covariate between

the weighted population and the PS-weighted -0.17(0.11) 0.22 -0.14 0.00
target population with G = 1 (0.10) (0.11) (0.11)
SW-weighted —0.24 (0.13) 0.03 -0.08 0.09

0.12) (0.11) (0.11)

(PS+SW)-weighted —0.03 (0.13) —0.02 —0.01 0.00
0.12) (0.11) (0.12)

1000 Unweighted ~0.40(0.09) 026 —021 0.09
(0.09) (0.07) (0.08)

PS-weighted ~0.17(0.07) 022 -0.13 0.0l
(0.08) (0.08) (0.08)

SW-weighted -0.25(0.09) 0.03 —0.08 0.09

“PS-weighted” refers to

the population weighted (0.09)  (0.08) (0.08)

by propensity scores (PS+SW)-weighted —0.03 (0.09) —0.02 0.00  0.00
only, as in the estimator (0.10)  (0.08) (0.08)
Tow; “SW-weighted” refers 2000 Unweighted —0.40(0.06) 026 -0.21 0.09
to the population weighted by (0.05) (0.05) (0.05)
sampling probability weights PS-weighted -0.16 (0.05) 022 —0.13 0.01
only, as in the estimator Tsw; (0.05)  (0.05) (0.05)

(PS+SW)-weighted” refers to SW-weighted ~025(0.06) 003 -008 0.09
the population weighted by both (0.06) (0.05) (0.06)
propensity scores and sampling . ) ) )
probabilities, as proposed in (PS+SW)-weighted —0.02(0.07) —0.02 0.00  0.00

this paper (0.06) (0.06) (0.05)

Table 2 The performance of the proposed estimator and two other comparisons for 7 in (3)

Estimator N Bias RMSE CI length CRMmc CRBoot
& 500 0.18 0.77 3.04 0.95 0.94
pw
1000 0.13 0.51 2.03 0.94 0.94
2000 0.11 0.35 1.33 0.93 0.93
7 500 0.38 0.85 2.96 0.93 0.89
pw
1000 0.32 0.57 1.95 0.90 0.87
2000 0.33 0.45 1.29 0.82 0.79
Tew 500 -0.28 0.58 1.80 0.92 0.87
1000 -0.23 0.44 1.29 0.90 0.84
2000 -0.24 0.35 0.94 0.83 0.80

RMSE denotes the root mean squared error; CI length refers to the average length of 95% bootstrap-based
confidence intervals; CRyc indicates the coverage rate of 95% confidence intervals using Monte Carlo
variance; and CRp,ot indicates the coverage rate using bootstrap variance

and T4y show substantial bias and undercoverage of the confidence intervals, which do not
necessarily improve with increasing population size.

In Appendix Section A2, we present the simula-
tion results for estimating EYLi-Y3|Gi=1,5=1) and
E(Y;) | Gi=2) ~E(Y$ | Gi=1) — {E(Y} | G, =4) ~E(Y} | Gi =3)}. The result
supports our theoretical derivations about the asymptotic behaviors of the two comparisons,
Tpw and Taw. This indicates that the estimator excluding either weight—propensity score or
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survey weights—provides a consistent estimator for a different effect, which is often not the
primary focus in policy effect evaluation.

5 Data Application

In our data application study, we aim to evaluate the effect of the Philadelphia beverage tax
on soda consumption among high school students. Sugar-sweetened beverages are known to
be a significant source of calories for U.S. youth aged 14—18 years (Reedy and Krebs-Smith
2010; Miller et al. 2016). Their consumption has been shown to be highly associated with
obesity, cardiovascular health, and even academic performance (Malik et al. 2013; Kosova
etal. 2013; Park et al. 2012). If the beverage tax proves effective in reducing soda consump-
tion among high school students in Philadelphia, similar tax policies could be implemented
in other regions to improve adolescent health.

The YRBS data provide a school-district level biennial survey, managed by the Centers
for Disease Control and Prevention (CDC). We use data collected from September 2013
to December 2019, providing two time points before the excise tax and two points after
the excise tax (I' = 4). In addition to Philadelphia, we use survey participants from six
other cities that had not implemented the beverage tax until 2019, for control groups: New
York City, NY (NYC), Orange County, FL (OL), Palm Beach County, FL (PB), Broward
County, FL (FT), San Diego, CA (SA), and Los Angeles, CA (LO). High school students
were sampled through a two-stage process. In the first stage, high schools were selected
with a probability proportional to their enrollment size. In the second stage, the classes and
periods for student participation in the survey were randomly selected. The YRBS data
provide weights that reflect the representativeness of the population of students from which
the sample was drawn. These weights are calculated using the inverse of the probability of
selection from the two-stage sampling mechanism and are further adjusted for school and
student non-response based on participants’ sex, grade, and race/ethnicity.

The left panel of Fig. 1 shows the changes in the number of survey participants across cit-
ies at four different time points. Within each city, there are no substantial variations in par-
ticipant numbers, although New York City shows a noticeably larger student sample, likely
due to its larger high school student population. The right panel of Fig. 1 presents the time
trend of average weekly soda consumption in Philadelphia and six other control cities across
four survey periods. The vertical lines of each panel indicate the time at implementation of
the beverage tax in Philadelphia. Overall, there is a downward trend in soda consumption
across all cities, with a more pronounced decline in Philadelphia, where the consumption
levels before the excise tax were higher than in other cities.

In our analysis, we apply our estimator, Tipw in (8), to the YRBS data to examine the
effect of the beverage tax on soda consumption among high school students in Philadel-
phia. The outcome is measured using a survey question on weekly soda consumption, with
response options rescaled to approximate average weekly intake. For the propensity score
model, we use a multinomial regression that adjusts for sex, age, BMI, and race/ethnicity
assuming that these covariates are not affected by the intervention. Table A5 in Appen-
dix A3 presents the distribution of each variable across four time periods. We exclude
12.9% of study participants due to missing covariate values, resulting in a final sample of
n = 60,084 survey participants. The two pre-intervention periods (2013 and 2015) and
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Distribution of YRBSS Participants Across Cities Distribution of Soda Consumption Across Cities
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Fig. 1 (Left) The number of survey participants; (right) the average servings of soda consumption per
week among the participants across cities at four different time points

the two post-intervention periods (2017 and 2019) are grouped to construct four groups as
defined in Eq. (1). Our target population is high school students in Philadelphia during the
pre-intervention periods. Table 3 compares the distribution of baseline covariates between
the pre- and post-intervention periods within Philadelphia and other control cities (e.g.,
across G = 1,2, 3,4). Compared to participants from other control cities, those in Phila-
delphia had, on average, a higher BMI and were more likely to identify as Black or African
American. Within Philadelphia, there was little difference in baseline covariates between
participants during the pre- (G = 1) and post- (G = 2) intervention periods.

We implement three weighting schemes (Table 4). Table A6 in Appendix A3 presents
covariate (im)balance for each variable in the propensity score model, comparing the target
population with control populations reweighted under each scheme. We then compare our
proposed estimator with the other IPW estimators introduced in the previous section. To
obtain their standard errors, we use the bootstrap method that draws each survey sample
with replacement and adjusts the drawn samples using their survey weights. Table 4 shows
the point estimates and the corresponding 95% confidence interval. The point estimates
from all three estimators are negative. With our proposed estimator of Tipw, we fail to reject
the null of no effect of the beverage tax on soda consumption among high school students
in Philadelphia, whereas the other two estimators do reject the null. This could be due to the
larger variability of ?ipw compared to the other two, or because the difference in the out-
come trends can be explained by sample differences across the groups. The latter explana-
tion seems plausible, as the other two estimators, ?pw and T4y, show significant effect with
slightly reduced variability. However, these two estimators do not account for heterogeneity
across both treatment groups and survey samples. The results from these estimators instead
suggest that the beverage tax could be effective in reducing soda consumption for survey
participants during the pre-intervention periods and for high school students in the mixed
groups, but not for those in Philadelphia during the pre-intervention periods. These results
demonstrate that our conclusion regarding the policy effect can easily shift with the choice
of target estimand.
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Table 3 A comparison of key Characteristic G=1 G=2 GG =3 G=4
variables between four different Sample size 2375 2193 28.380 27.136
groups
Sex
Female 1313 1187 (54%) 14,665 14,344
(55%) (52%) (53%)
Male 1062 1006 (46%) 13,715 12,792
(45%) (48%) (47%)
Age
< 12 years 3(0.1%) 2(<0.1%) 47(0.2%) 44
(0.2%)
13 years 1 1(<0.1%) 318 (1.1%) 347
(<0.1%) (1.3%)
14 years 214 189 (8.6%) 4290 (15%) 4589
(9.0%) (17%)
15 years 555 499 (23%) 7064 (25%) 7008
(23%) (26%)
16 years 707 675 (31%) 7214 (25%) 7019
(30%) (26%)
17 years 548 497 (23%) 6795 (24%) 6077
(23%) (22%)
> 18 years 347 330 (15%) 2652 2052
(15%) (9.3%) (7.6%)
BMI
Mean (SD) 23.6(5.0) 239(54) 23.0(48) 232
(5.1
Race/ethnicity
White 331 261 (12%) 5475 (19%) 4800
(14%) (18%)
Black or African 1066 947 (43%) 5884 (21%) 5447
American (45%) (20%)
Hispanic/Latino 504 542 (25%) 12,437 12,213
(21%) (44%) (45%)
All other races 474 443 (20%) 4584 (16%) 4676
(20%) (17%)
Survey weights
Mean (SD) 22(12)  23(14) 34 (31) 3227)
Soda usage (per week)
0 581 709 (32%) 8307 (29%) 9243
(24%) (34%)
1-3 893 852 (39%) 11,448 11,231
(38%) (40%) (41%)
4-6 406 304 (14%) 4249 (15%) 3398
(17%) (13%)
7-13 142 112 (5.1%) 1551 1235
(6.0%) (5.5%) (4.6%)
14-20 135 94 (4.3%) 1214 866
(5.7%) (4.3%) (3.2%)
21-27 97 (4.1%) 47 (2.1%) 616 (2.2%) 487
(1.8%)
> 28 121 75(3.4%) 995 (3.5%) 676
(5.1%) (2.5%)
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Tab_leh4 ("ll“he _results of th]? t:;“ee Estimator ~ Weighting type Point estimate (95% CI)
weighted estimators applied to = — —

the YRBS data to evaluate the Tipw x(1/p(x))x(1/p(x)) 0.096 (- 0.685, 0.493)
effect of the beverage tax to soda :r\pw {/6\1 (x)/(/e\g (%)} —0.587 (—0.999, — 0.176)
consumption T (1/p(x)) —0.923 (- 1431, - 0.415)

6 Discussion

In this paper, we propose a propensity score-weighted DiD estimator that integrates sur-
vey weights. Our estimator is designed to address covariate imbalances between multiple
groups, collected at different time points in RCS survey data. We clearly define the target
estimand and outline the identification assumptions. We demonstrate that, in addition to the
counterfactual parallel trends assumption, ignorability of the group and the sampling vari-
ables conditional on baseline covariates is essential with RCS survey data.

There are a few limitations of our proposed approach. First, our proposed estimator relies
on the correct specification of the propensity score model. If key covariates are omitted
or the modeling relationships are incorrect, the estimated weights could easily lead to a
biased causal estimate. Additionally, some covariates collected in the survey (e.g., BMI
measured in 2017) may have been affected by the intervention. To reduce the impact of
model specification, researchers can consider leveraging a wide range of machine learning
tools within the framework of double/debiased machine learning approaches (Chernozhu-
kov et al. 2018). Efficiency and robustness can be improved by incorporating outcome
regression into the IPW estimator, as proposed in the related DiD literature (Sant’ Anna and
Xu 2023). Further research is needed to appropriately integrate survey design features into
the outcome regression model. Second, we assume the survey weights provided in the data-
set are correct and known. If these weights are not correct, this can easily result in biased
estimates. Moreover, as baseline covariates play a crucial role in constructing propensity
scores, we excluded observations with missing covariate values from the analysis. However,
this exclusion may alter both the study sample and the target population, as only a subset of
the data is used and weighted. Lastly, there exist several different approaches to incorporat-
ing the sampling design in a bootstrap method (Rust and Rao 1996; Beaumont and Charest
2012; Kim et al. 2024). Given the complexity of the sampling design, research questions,
and analytic methods, researchers may choose different approaches for variance estimation
using bootstrap techniques. It is future work to examine the derivation of an analytic vari-
ance for the IPW-type estimator with non-binary treatment variables (e.g., G;) using an
M-estimation framework (Hirano et al. 2003; Kostouraki et al. 2024).

Future research could also explore extending our methods to incorporate estimated survey
weights, particularly when auxiliary data (e.g., baseline covariates of all U.S. high school
students or an instrumental variable) is available (Wang et al. 2014; Miao et al. 2025). This
would broaden the generalizability of the causal effect beyond the treatment population.
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Appendix A1 Proofs

Proof of Theorem 1. For simplicity, we focus on g = 2 where (¢,2,d) = (1,1,1). Then
by the Law of Large Numbers, when the propensity scores are correctly specified,

1 S I(G; = 2)e1(Xy) N—00 Yi1 Sil(G; = 2)e1 (X5)
Z B ~— Y — E o . )
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where m; = Pr(G; = 1). Then by Assumptions 1-6.
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Similarly, let us prove the consistency of 7w — E(Yi =Y | G; = 1,5; = 1) and
P — E(Y1 | Gy = 2) —E(Y3 | Gi = 1) —{E(YS | Gi = 4) —E(Y} | G, = 3)},
focusing on g = 2 case.

Consider Ty, first.
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where 7§ = Pr(G; = 1,5; = 1). Then by Assumptions 1-6,
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Now consider Tgy.
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where m = Pr(G = 2). Then by Assumptions 1-6,
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Appendix A2 Additional simulation study results

A2.1 Comparison of results across estimands

In this section, we investigate whether our two comparison estimators, T,y and Tgy,
are a consistent estimator for different estimands through simulations. We use the
same data-generating setting and the performance metrics as in Section 4 of the main
text but change the target estimands to E(Y;} — Yl | G; = 1,5; = 1) (Table A1) and
E(Y} | G =2) —E(YY | G, = 1) —{E(YY | Gi = 4) —E(Y$ | G; = 3)} (Table A2),
respectively.

Estimator N Bias RMSE Cllength CRmc  CRBpoot
Tipw 500 -0.00 0.75 3.04 0.96 0.96
1000 -0.06 0.50 2.03 0.96 0.97
2000 -0.07 0.34 1.33 0.95 0.96
Tow 500 0.20 0.79 2.96 0.95 0.92
1000 0.14 0.49 1.95 0.94 0.92
2000 0.14 0.35 1.29 0.93 0.91
Tsw 500 -0.46 0.69 1.80 0.84 0.79
1000 -0.42 0.56 1.29 0.79 0.72
2000 -0.42 0.49 0.94 0.59 0.57

Table A1l: The performance of the proposed estimator and two other comparisons
for E(Y;; — Y9 | G; = 1,S5; = 1). RMSE denotes the root mean squared error; CI
length refers to the average length of 95% bootstrap-based confidence intervals; CRyc
indicates the coverage rate of 95% confidence intervals using Monte Carlo variance;
and CRp,ot indicates the coverage rate using bootstrap variance.

Tables Al and A2 show the performance of the three estimators, Tipw, Tpw, and
P, for BV} — Y9 | Gy = 1,8 = 1) and E(Y}l | G = 2) —E(Y§ | G, = 1) -
{E(YS | Gi = 4) —E(Y | G; = 3)}, respectively. While the performance of Tipy
demonstrates the best performance for 7, as shown in Table 2 in the main text, the
estimator 7,y exhibits decreasing bias as N increases for E(Y,} — Y3 | G; = 1,5, = 1)
and the nominal coverage rates, with the improvement as N increases (Table Al).
On the other hand, when we do not use propensity scores in the estimator, like in
Tsw, it actually estimates the difference in differences among four different groups,
which is not necessarily equivalent to 7. Table A2 demonstrates that the estimator
Tsw Tesults in the smallest bias and RMSE among the three estimators in estimating
E(Y} | Gi=2) —E(Y3 | G, = 1) — {E(YS | Gi = 4) — E(Y3 | G: = 3)}.

A2.2 Impact of model misspecification

In this section, we investigate the impact of model misspecification of {eg(x)};f:1 and
p(x) under the same data-generating setting as in Section 4 of the main text with
N = 1000. Here, the key covariate X; is omitted from the multinomial regression



Estimator N Bias RMSE CIlength CRmc  CRpoot

Tipw 500 0.42 0.84 3.04 0.93 0.91
1000 0.36 0.59 2.03 0.91 0.89
2000 0.35 0.47 1.33 0.84 0.82
Tow 500 0.34 0.67 2.30 0.93 0.91
1000 0.55 0.71 1.95 0.79 0.76
2000 0.56 0.63 1.29 0.59 0.57
Tow 500 -0.04 0.36 1.80 0.98 0.99
1000  -0.00 0.26 1.29 0.99 0.99
2000 -0.00 0.18 0.94 0.99 0.99

Table A2: The performance of the proposed estimator and two other comparisons
for E(Y1 | Gi = 2) — E(Y3 | Gi = 1) — {E(YY | G; = 4) — E(YY | Gy = 3)}.
RMSE denotes the root mean squared error; CI length refers to the average length of
95% bootstrap-based confidence intervals; CRyc indicates the coverage rate of 95%
confidence intervals using Monte Carlo variance; and CRpoot indicates the coverage
rate using bootstrap variance.

used to estimate the propensity scores (“Propensity score misspecification”) and the
specification of the survey weight probabilities (“Survey weight misspecification”).

Propensity score misspecification
Weighting scheme X1 X X3 X4

Unweighted -0.40 (0.09)  0.26 (0.09) -0.21 (0.07)  0.09 (0.08)
PS-weighted -0.40 (0.08)  0.23 (0.07) -0.13 (0.07) 0.01 (0.07)
SW-weighted -0.25 (0.09)  0.03 (0.09) -0.08 (0.08) 0.09 (0.08)
(PS+SW)-weighted ~ -0.21 (0.09)  0.00 (0.09) -0.01 (0.07)  0.00 (0.07)

Survey weight misspecification

Weighting scheme X1 Xo X3 X4
Unweighted -0.40 (0.09)  0.26 (0.09) -0.21 (0.07) 0.09 (0.08)
PS-weighted 0.17 (0.07)  0.22 (0.08) -0.13 (0.08)  0.01 (0.08)
SW-weighted -0.52 (0.09) -0.05 (0.09) -0.07 (0.08)  0.09 (0.08)

(PS+SW)-weighted ~ -0.20 (0.07) -0.02 (0.09)  0.00 (0.08)  0.01 (0.08)

Table A3: Average standardized mean difference (SMD) and its sample variance
across 500 replicates for each covariate between the weighted population and the target
population with G = 1. “PS-weighted” refers to the population weighted by propensity
scores only, as in the estimator Tpy; “SW-weighted” refers to the population weighted
by sampling weights only, as in the estimator Tyy; “(PS+SW)-weighted” refers to the
population weighted by both propensity scores and sampling probabilities, as proposed
in this paper.

Table A3 presents the covariate (im)balance measures (SMD) for each covariate in
(X1, X2, X3, X4). Compared to the results in Table 1 in the main text, the reduction
in imbalances for each covariate (Xo, X3, X4) is similar across the different weighting



schemes. However, imbalance in the omitted variable X; under the propensity score
in the “PS-weighted” and “(PS+SW)-weighted” remains substantial. Moreover, under
survey weight misspecification, the imbalance in the omitted variable X (highlighted
in yellow) in the “SW-weighted” scheme is actually larger than in the unweighted
population.

Propensity score misspecification
Estimator Bias RMSE CIlength CRmc CRpoot

Tipw -0.17 0.47 1.65 0.93 0.93
Tow 0.04 0.47 1.80 0.95 0.94
Tow -0.23 0.44 1.30 0.90 0.85

Survey weight misspecification
Estimator Bias RMSE Cllength CRmc CRBoot

Tipw 0.22 0.52 1.98 0.92 0.92
Tow 0.32 0.57 1.95 0.90 0.87
Tow -0.17 0.40 1.27 0.91 0.87

Table A4: The performance of the proposed estimator and two other comparisons for
7. RMSE denotes the root mean squared error; CI length refers to the average length
of 95% bootstrap-based confidence intervals; CRyc indicates the coverage rate of 95%
confidence intervals using Monte Carlo variance; and CRpot indicates the coverage
rate using bootstrap variance.

Table A4 shows the impact of omitting X; on the performance of each estimator.
Compared to the results in Table 2, the overall performance does not differ substan-
tially, but the direction of bias in the proposed estimator, Tipy, differs from that in
Table 2 under propensity score misspecification. These estimators also exhibit less
variability (shorter confidence interval lengths), possibly due to the reduced number of
covariates in the propensity score estimation. Overall, the results suggest some degree
of robustness to model misspecification; however, in general, we expect that misspec-
ification of either the propensity score or the survey weights can affect the empirical
results.

Appendix A3 Additional data application results

Table A5 presents the summary statistics across four different periods, with missing
values for sex, age, BMI, and race/ethnicity.



Characteristic N 2013 2015 2017 2019
City Name 69,013 16,874 17,999 17,754 16,386
FT 1,323 (7.8%) 1,349 (7.5%) 904 (5.1%) 1,147 (7.0%)
LO 1,543 (9.1%) 2,228 (12%) 1,357 (7.6%) 1,246 (7.6%)
NYC 8,124 (48%) 6,860 (38%) 8,129 (46%) 7,766 (47%)
oL 1,602 (9.5%) 1,441 (8.0%) 1,300 (7.3%) 1,271 (7.8%)
PB 1,774 (11%) 2,332 (13%) 2,182 (12%) 2,488 (15%)
PH 1,170 (6.9%) 1,509 (8.4%) 1,458 (8.2%) 1,091 (6.7%)
SA 1,338 (7.9%) 2,280 (13%) 2,424 (14%) 1,377 (8.4%)
Sex 68,430
Female 8,865 (53%) 9,223 (52%) 9,283 (53%) 8,611 (53%)
Male 7,912 (47%) 8,643 (48%) 8,316 (47%) 7,577 (47%)
Age 68,788
<12 Yr 67 (0.4%) 86 (0.5%) 83 (0.5%) 106 (0.6%)
13 Yr 243 (1.4%) 170 (0.9%) 247 (1.4%) 227 (1.4%)
14 Yr 2,688 (16%) 2,516 (14%) 3,018 (17%) 2,671 (16%)
15 Yr 4,163 (25%) 4,463 (25%) 4,578 (26%) 4,145 (25%)
16 Yr 4,325 (26%) 4,530 (25%) 4,509 (25%) 4,290 (26%)
17 Yr 3,736 (22%) 4,408 (25%) 3,814 (22%) 3,607 (22%)
> 18 Yr 1,607 (9.5%) 1,762 (9.8%) 1,447 (8.2%) 1,282 (7.9%)
BMI 62,304
Mean (SD) 23.0 (5.2) 23.2 (5.1) 23.2 (5.2) 23.3 (6.0)
Race/ethnicity 66,463
White 3,153 (19%) 2,998 (17%) 2,902 (17%) 2,567 (16%)
Black or African American 3,717 (23%) 3,910 (23%) 3,651 (21%) 3,556 (23%)
Hispanic/Latino 6,814 (42%) 7,528 (43%) 7,438 (44%) 7,088 (45%)
All Other Races 2,595 (16%) 2,918 (17%) 3,057 (18%) 2,571 (16%)
Survey weights 69,013
Mean (SD) 36 (32) 31 (29) 29 (26) 33 (26)
Soda Usage (per week) 69,013

0

4,764 (28%)

5,371 (30%)

5,882 (33%)

5,702 (35%)

1-3 6,655 (39%) 7,211 (40%) 7,170 (40%) 6,753 (41%)
4-6 2,624 (16%) 2,592 (14%) 2,237 (13%) 2,066 (13%)
7-13 959 (5.7%) 994 (5.5%) 891 (5.0%) 723 (4.4%)
14-20 788 (4.7%) 760 (4.2%) 648 (3.6%) 504 (3.1%)
21-27 410 (2.4%) 413 (2.3%) 380 (2.1%) 258 (1.6%)
>28 674 (4.0%) 658 (3.7%) 546 (3.1%) 380 (2.3%)

Table A5: Summary table of the YRBS data across four time periods.

Table A6 presents SMDs for each covariate included in the propensity score model,
comparing the target population (G = 1) to weighted control populations, where units
from the other groups (G = 2,3,4) are treated as controls. When applying combined
propensity score and sampling probability weights (“(PS4+SW)-weighted”), covariate
imbalance is generally reduced across all variables. In contrast, weighting only by
propensity scores or sampling probabilities results in residual imbalance in certain
covariates (e.g., Race/ethnicity: Black or African American).



Characteristic Unweighted  PS-weighted = SW-weighted (PS 4+ SW)-weighted

Adjusted sample size 59542.81 16038.06 17509.25 34237.09
Sex 0.0144 0.0428 -0.0083 0.0202
Age
<12 ¥Yr -0.0009 -0.0005 -0.0010 -0.0010
13 Yr -0.0108 -0.0013 -0.0107 -0.0013
14 Yr -0.0660 0.0013 -0.0688 -0.0085
15 Yr -0.0194 0.0007 -0.0198 0.0002
16 Yr 0.0182 -0.0202 0.0298 -0.0048
17 Yr 0.0014 0.0017 0.0067 0.0123
> 18 Yr 0.0774 0.0183 0.0638 0.0031
BMI 0.1042 0.0149 0.1048 0.0144
Race/ethnicity
White -0.0213 0.0224 -0.0348 0.0123
Black or African American  0.3267 0.0899 0.2997 0.0367
Hispanic/Latino -0.2644 -0.0406 -0.2515 -0.0166
All Other Races -0.0410 -0.0718 -0.0133 -0.0325

Table A6: The SMD for each covariate is calculated between the weighted population
and the target population with G = 1. “PS-weighted” refers to weighting by propensity
scores only; “SW-weighted” refers to weighting by sampling probabilities only; and
“(PS+SW)-weighted” refers to weighting by both propensity scores and sampling
probabilities, as proposed in this paper.
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