
Received: 8 November 2024 / Revised: 22 September 2025 / Accepted: 13 October 2025
© The Author(s) 2025, corrected publication 2025

This work was part of the first author’s Master’s thesis at Brown University.

	
 Youjin Lee
youjin_lee@brown.edu

Kerry Ye
yayi_ye@alumni.brown.edu

Alyssa Bilinski
alyssa_bilinski@brown.edu

1	 Department of Biostatistics, Brown University, 121 S Main St, Providence, RI 02903, USA
2	 Department of Health Services, Policy & Practice, Brown University, 121 S Main St, 

Providence, RI 02903, USA

Difference-in-differences analysis with repeated cross-
sectional survey data

Kerry Ye1 · Alyssa Bilinski1,2 · Youjin Lee1

Health Services and Outcomes Research Methodology
https://doi.org/10.1007/s10742-025-00364-7

Abstract
Difference-in-differences (DiD) approach is one of the most widely used approaches for 
evaluating policy effects. However, traditional DiD methods may not recover the popula-
tion-level average treatment effect on the treated (ATT) in the absence of population-level 
panel data, particularly when the composition of units in the treatment group changes over 
time. In this work, we address the following two challenges when applying DiD methods 
with repeated cross-sectional (RCS) survey data: (1) heterogeneous compositions of study 
samples across different time points, and (2) availability of data for only a sample of the 
population. We introduce a policy-relevant target estimand and establish its identification 
conditions. We then propose a new weighting approach that incorporates both estimated 
propensity scores and given survey weights. We establish the theoretical properties of the 
proposed method and examine its finite-sample performance through simulations. Finally, 
we apply our proposed method to a real-world data application, estimating the effect of a 
beverage tax on adolescent soda consumption in Philadelphia.

Keywords  Difference-in-differences · Inverse probability weighting · Survey samples · 
Repeated cross-sectional data
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1  Introduction

Understanding the real-world impact of policies is crucial for designing effective interven-
tions. However, in the absence of randomized interventions, it can be difficult to identify 
appropriate comparison groups. Difference-in-differences (DiD) is a widely used causal 
inference method for estimating policy effects (Abadie 2005; Angrist and Pischke 2009). 
Unlike other common causal inference methods for observational studies, DiD does not 
require that treated and control units have comparable average potential outcomes given 
covariates. Instead, it relies on the assumption that, in the absence of the intervention, con-
trol units would have comparable changes in average outcomes over time as the treated 
units. This assumption is known as the counterfactual parallel trends assumption, as we do 
not observe the outcome changes for the treated units in the absence of intervention.

The DiD approach has been predominantly used in panel data settings, often imple-
mented with a two-way fixed effects regression that adjusts for unit (or group) and time 
effects  (Angrist and Pischke 2009; Imai and Kim 2019). However, in recent years, there 
has been an increased number of studies evaluating interventions using DiD with repeated 
cross-sectional (RCS) survey data, where survey samples are taken from potentially hetero-
geneous populations across multiple time points (e.g., Rao et al. 2014; Howe et al. 2016; 
Cerdá et al. 2017; Edmondson et al. 2021). This may be due to the fact that, compared to 
panel data—which require following the same units over time—studies using RCS survey 
designs often capture a broader range of the population. This can improve the generaliz-
ability of the policy effect.

1.1  Motivating data application

Our motivating data application aims to evaluate the effect of the Philadelphia beverage 
tax on soda consumption among high school students. On January 1, 2017, Philadelphia 
increased the excise tax on sugar-sweetened and artificially-sweetened beverages with the 
objectives both to generate revenue and reduce the consumption of these drinks. While 
several previous studies have investigated the effect of the beverage tax policy on sales and 
prices (Powell and Leider 2020; Roberto et al. 2019; Cawley et al. 2020), subgroup analy-
ses using individual-level data (rather than aggregate sales data) are needed to understand 
which groups of individuals actually reduced soda consumption. Our study focuses specifi-
cally on high school students.

To apply DiD approaches, outcome trends over time are typically used for identification. 
However, with high school students’ soda consumption as the primary outcome of interest, 
defining these trends among high school students is not straightforward. Transitions from 
middle school to high school and from high school to adulthood likely occur at different 
times for high school students at a given time point, either before or after the interven-
tion. This variation can easily lead to heterogeneity in the composition of the study sample 
over time and complicate sample recruitment, whether we follow the current high school 
students retrospectively or prospectively. As a result, we utilize RCS survey data from the 
Youth Risk Behavior Surveillance (YRBS) System instead of panel data.

The YRBS has conducted national, state, and large urban school district surveys on health-
related behaviors and experiences for students in grades 9–12 biennially since 1991 (Kann 
2018). Using such data raises several questions before applying DiD approaches: first, 
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how should we define outcome trends, potentially conditional on baseline covariates, with 
samples collected at different time points? With survey samples, should the counterfactual 
parallel trends assumption apply to the outcomes observed in the samples, or to those that 
would be observed in the broader target population?

1.2  Challenges in using repeated cross-sectional survey data

One of the fundamental challenges in using RCS survey data to evaluate policy effects is 
the ambiguity in defining the target population. The target population in DiD studies often 
consists of units in the treatment group, focusing on the average treatment effect on the 
treated (ATT). In panel data, the composition of the treatment group remains consistent 
across time periods, both before and after the intervention. In contrast, with RCS survey 
data, units in the treatment group who were actually affected by the intervention (e.g., high 
school students in Philadelphia who participated in the survey after the city implemented a 
tax policy) are not necessarily the same as those observed in the treatment group before the 
intervention. If the intervention effect varies depending on certain covariates (i.e., if effect 
heterogeneity exists), and if the distribution of those covariates differs across survey partici-
pants collected at different time points, then the target population on which the intervention 
effect is evaluated will affect our causal estimates.

In our context, we have two metrics to choose to define the target population: (1) whether 
we aim for sample-level or population-level treatment effects; and (2) whether we target 
the samples (or the population) collected at pre- or post-intervention periods, or both. Each 
of these considerations has been nuanced in the previous literature. Moreover, many DiD 
approaches using survey data do not account for the survey design, which may restrict the 
target population to the observed sample (e.g., Su et al. 2019; Wang et al. 2023; Su et al. 
2023). Some studies simply apply two-way fixed outcome regression models with survey 
weights  (Edmondson et  al. 2021), but it remains unclear how the two-way fixed-effects 
models address heterogeneity in composition across different time points and treatment 
groups.

There is a few recent research on DiD approaches with RCS survey data. Stuart et al. 
(2014) proposed incorporating propensity scores into DiD outcome models to balance the 
characteristics between different groups defined by the treatment group and the time points 
(treatment vs. control, pre- vs. post-intervention). Sant’Anna and Xu (2023) further devel-
oped non-parametric DiD estimators for the ATT with doubly-robust properties, account-
ing for compositional changes in RCS data. They showed that many of the proposed DiD 
estimators lose their desirable properties (e.g., double-robustness) under compositional 
changes (Hong 2013; Ryan et al. 2015; Oduse et al. 2021; Klootwijk et al. 2024). These 
approaches assume that the study sample is randomly selected from the population of inter-
est. On the other hand, our work considers cases where the study sample is a probability 
sample from the population of interest. In causal inference literature, several studies have 
discussed incorporating known survey weights into propensity scores (Ridgeway et  al. 
2015; Dong et al. 2020; Yang et al. 2023), and this approach has been incorporated in DiD 
settings. Han et al. (2017) used the propensity score-weighted DiD estimators and adjusted 
survey weights in each estimator, but their approach is based on the panel data, where pro-
pensity scores are not intended to account for compositional changes over time. Dwomoh 
et al. (2020) used the sampling weights both in the propensity scores model and the outcome 
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model. However, it is unclear how they adapted propensity score methods to account for 
compositional differences over time, as they grouped units collected before and after the 
intervention together.

1.3  Outline of the paper

In this work, we propose a new propensity score-weighted DiD estimator for RCS survey 
data. Specifically, our proposed estimator uses propensity scores to adjust for compositional 
changes over time, while incorporating the given survey weights to infer the target estimand 
defined at the population—rather than sample—level. The remainder of this paper is struc-
tured as follows. Section 2 formally establishes our research question and defines our target 
estimand. We illustrate our proposed estimator followed by a series of causal assumptions 
in Sect. 3. Section 4 demonstrates the performance of the proposed methods in our simu-
lated data and Sect. 5 applies the method to the real-world data. Lastly, Sect. 6 discusses the 
potential limitations and the future research directions.

2  Setting and notation

2.1  Notation

Consider a population of size N. Let i index individual units and t denote the time points 
(i = 1, 2, . . . , N ; t = 0, 1, . . . , T − 1). For simplicity, we consider two time periods (i.e., 
T = 2), with t = 0 as the pre-intervention period (i.e., year 2015) and t = 1 as the post-
intervention period (i.e., year 2017). Let Di denote membership in the treatment group, i.e., 
Di = 1 if unit i belongs to the treatment group (e.g., Philadelphia) and 0 (e.g., other six con-
trol cities) otherwise. In this work, we view that the treatment group (e.g., cities) is a random 
variable for each unit rather a fixed, pre-defined group. This perspective allows us to avoid 
correlation among units in the same treatment group simply because they always share the 
same treatment status. Let Ri represent the time at which unit i is observable. For instance, 
Ri = 0 if unit i is a high school student at t = 0, and Ri = 1 if unit i is a high school student 
at t = 1. Assume that Ri can take only one value from 0 and T − 1. This may not neces-
sarily hold if overlaps in samples across multiple time points are allowed (e.g., students 
sampled in 2015 also appear in the 2017 sample. In such cases, where the same unit can be 
included multiple times, variance estimation must account for within-unit correlations. Let 
Zit indicate the treatment status at time t, where Zit = 1 if unit i is treated at time t, and 
Zit = 0 otherwise. A variable Yit is the outcome of interest for unit i at time t. Let Xi ∈ Rq  
be a vector of time-invariant covariates of unit i, measured before the intervention.

Given that the compositions of treated and control groups vary across different time 
points in RCS data with T = 2, we can categorize units into four distinct groups: the treat-
ment and control groups at each of pre-intervention (i.e., t = 0) and post-intervention (i.e., 
t = 1) periods. We introduce a variable Gi to denote these groups.

	

Gi =




1 Di = 1 at Ri = 0
2 Di = 1 at Ri = 1
3 Di = 0 at Ri = 0
4 Di = 0 at Ri = 1.

� (1)
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In our motivating data example, units with Gi = 1 refer to Philadelphia high school stu-
dents in 2015, while those with Gi = 2 refer to Philadelphia students in 2017. Units with 
Gi = 1 and Gi = 2 form the treatment group together (i.e., Di = 1); however, only those 
with Gi = 2, who are observable during the post-intervention period (i.e., at t = 1), actu-
ally receive the treatment. Although those with Gi = 1 do not actually receive the treatment 
since they are only observable during the pre-intervention period (i.e., at t = 0), they are 
essential for constructing the trends within the treatment group. Similarly, in our motivating 
data example, units with Gi = 3 refer to high school students in control regions in 2015, 
while those with Gi = 4 refer to students in control regions in 2017. The control group 
consists of units with Gi = 3 and Gi = 4 (i.e., Di = 0), and both of these groups are used 
to construct the trends for the control group. Let V  denote a sample space for any variable 
V; for example, in the case of a variable G denoting group membership, G = {1, 2, 3, 4} in 
this setting. Let I(·) denote the indicator function.

Lastly, because we do not observe the entire population of size N in survey sample, we 
introduce a variable Si to indicate whether unit i is sampled from the population. Let n 
denote the sample size in the survey data, i.e., n =

∑N
i=1 Si. This setting raises important 

questions about whether and how the counterfactual parallel trend assumption should be 
modified in the context of an RCS survey sample. For example, should we consider the 
outcome trends among only those who are sampled? The answers to these questions depend 
on the target estimand.

2.2  Target estimand

We introduce a potential outcomes framework (Holland 1986) to clarify our target estimand 
and establish identification conditions. Let Y 1

it  be a potential outcome under treatment and 
Y 0

it  be a potential outcome under control for unit i at time t. In policy evaluation, the ATT is 
a common target estimand, which is defined as follows.

	 E(Y 1
i1 − Y 0

i1 | Di = 1).� (2)

The expectation is taken across units over the entire population rather than sample. In (2), 
the target population includes those who are observable in either the pre- or post-interven-
tion periods. Instead, we set our target population as units with Gi = 1, i.e., the treated units 
observable in the pre-intervention period.

We define the target estimand τ , the average treatment effect on the treated at the pre-
intervention period, as follows.

	 τ := E(Y 1
i1 − Y 0

i1 | Gi = 1). � (3)

The two treatment effects defined in (2) and (3) can differ when units with Gi = 1 (e.g., Phil-
adelphia high school students in 2015) systematically differ from those with Gi = 2 (e.g., 
Philadelphia high school students in 2017), both on observed and unobserved factors. This 
is because units with Di = 1, which is conditioned on  (2), include a mix of those with 
Gi = 1 and Gi = 2. Specifically, if the distribution of covariates differs between those 
with Gi = 1 and Gi = 2, and the treatment effect varies based on those covariates, then 
the two effects in (2) and (3) can be different. Even though we focus our target on units 
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with Gi = 1, our proposed framework can be easily applied to E(Y 1
i1 − Y 0

i1 | Gi = g) 
with any g ∈ G. For example, as in the case similarly considered in  Sant’Anna and Xu 
(2023), we can consider E(Y 1

i1 − Y 0
i1 | Gi = 2). However, when our target population 

involves a group observable in the post-intervention periods (e.g., those with Gi = 2), we 
may require less stringent assumptions than in cases involving groups observable in the 
pre-intervention periods (e.g., those with Gi = 1), as the potential outcome Y 1

i1 is observ-
able for those with Gi = 2. If the estimand involves treated units across all treated popula-
tion, as in Eq. (2), it can be expressed as a weighted average of group-specific effects, e.g., 
E(Y 1

i1 − Y 0
i1 | Gi = 1)Pr(Gi = 1 | Di = 1) + E(Y 1

i1 − Y 0
i1 | Gi = 2)Pr(Gi = 2 | Di = 1).

Another important note here is that the expectations in  (2) and  (3) are taken over N 
population rather than n selected samples. If we do not account for the fact that our observa-
tions are a probability sample from the larger population and then directly apply the DiD 
approach to the sample, we end up estimating E(Y 1

i1 − Y 0
i1 | Gi = 1, Si = 1) at best. This 

effect, in our motivating example, refers to the effect on Philadelphia high school students 
who participated in the survey in 2015. However, for broader policy implications beyond 
the sample, what we may aim to make an inference on could be the effect on the treated units 
of the entire population from which the survey sample was taken.

We expect that, with RCS, the counterfactual parallel trends assumption, typically used 
with panel data observed over time, requires some modifications. Suppose that the survey 
samples are representative, so that E(Y 0

it | Gi = g, Si = 1) = E(Y 0
it | Gi = g) for g ∈ G. 

In that case, we can simply consider the following (unconditional) counterfactual parallel 
trends assumption between the treatment and control groups.

	 E(Y 0
i1 | Gi = 2) − E(Y 0

i0 | Gi = 1) = E(Y 0
i1 | Gi = 4) − E(Y 0

i0 | Gi = 3). � (4)

In Eq.  (4), the three conditional expectations are observable except for E(Y 0
i1 | Gi = 2); 

for example, we do not observe the outcome in the absence of intervention for Philadelphia 
high school in 2017. Therefore, we require an additional assumption that Gi is ignorable 
within the treatment group—for example, that E(Y 0

i1 | Gi = 2) = E(Y 0
i1 | Gi = 1). In the 

next section, we formally introduce the identification assumptions.

3  Method

In this section, we first establish the assumptions required to identify τ  in  (3) and then 
propose the inverse probability weighted DiD estimator. For simplicity, we illustrate the 
methods given four groups defined in (1) with T = 2. However, the assumptions can easily 
generalized to the case with T > 2.

3.1  Assumptions

Assumption 1  (Consistency)

	 Yit = Y 1
itI(Zit = 1) + Y 0

itI(Zit = 0).
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Assumption 2  (Stable Unit Treatment Value Assumption (SUTVA)) For any treatment level, 
there is only one version of that treatment. A potential outcome for any unit is not affected 
by the treatment received by any other unit (no interference).

Assumption 3  (Positivity) For all g ∈ G and x ∈ X .

	 0 < Pr(Gi = g | Xi = x, Si = 1) < 1.

Assumptions 1 and 2 allow us to connect the observed outcomes to the potential outcomes 
under either treatment or control. The positivity assumption in our contexts applies to 
groups Gi rather than Di, given that units are in the sample (i.e., conditional on Si=1). 
These assumptions are standard in causal inference literature.

Assumption 4  (Counterfactual parallel trends assumption) For all g, g′ ∈ G and x ∈ X .

	 E(Y 0
i1 − Y 0

i0 | Xi = x, Gi = g) = E(Y 0
i1 − Y 0

i0 | Xi = x, Gi = g′). � (5)

The above assumption implies that, conditional on X, the outcome trends between the pre- 
and post-intervention periods are equivalent across groups. Unlike in panel data, where both 
Y 0

1  and Y 0
0  are observable for controls, here we observe at most one of them for any group 

in G. Therefore, we require the following assumption.

Assumption 5  (Group independence and ignorability)

	

G⊥⊥ S | X
G⊥⊥ (Y 1

1 , Y 0
1 , Y 0

0 ) | X, D

Note that the first condition in Assumption 5 implies that Pr(Gi = g | Xi, Si = 1) will be 
equivalent to Pr(Gi = g | Xi). The second condition of Assumption 5 implies exchange-
ability of the potential outcomes between groups within the same treatment group (e.g., 
Philadelphia high school students sampled in 2015 and 2017), conditional on X. While 
they may appear redundant—potentially reducing the appeal of using DiD approaches—this 
ignorability assumption is required only within the same treatment group by conditioning on 
D. This allows us to leverage observable outcome samples from different time points within 
the same treatment group. In other words, we can establish the following parallel trends:

	

E(Y 0
i1 | Xi = x, Gi = 2) − E(Y 0

i0 | Xi = x, Gi = 1)
= E(Y 0

i1 | Xi = x, Gi = 4) − E(Y 0
i0 | Xi = x, Gi = 3).

However, none of the conditional expectations above are identifiable as we only observe the 
potential outcomes of units in the survey sample.

Assumption 6  (Ignorable sampling)

	 S⊥⊥ (Y 1
1 , Y 0

1 , Y 0
0 ) | X, G� (6)
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Assumption 6, a standard assumption in causal inference with survey designs, then leads to 
the parallel trends in the potential outcome trends that are identifiable:

	

E(Y 0
i1 | Xi = x, Gi = 2, Si = 1) − E(Y 0

i0 | Xi = x, Gi = 1, Si = 1)
= E(Y 0

i1 | Xi = x, Gi = 4, Si = 1) − E(Y 0
i0 | Xi = x, Gi = 3, Si = 1).

� (7)

As is common in panel data DiD approaches, one can assess the plausibility of Eq.  (7) 
by testing outcomes in the pre-intervention period  (Gibson and Zimmerman 2021; Roth 
2022)—for example, by comparing outcomes for both the treatment and control groups 
across two consecutive time periods before the intervention. However, such tests do not 
guarantee that the trends observed in the pre-intervention period will continue afterward.

Finally, we can represent our target estimand τ  as the difference in differences of the 
identifiable conditional expectations.

	

τ = EX|G=1
{
E(Y 1

i1 − Y 0
i1 | Xi = x, Gi = 1)

}

= EX|G=1
{
E(Y 1

i1 − Y 0
i1 | Xi = x, Gi = 1, Si = 1)

}

= EX|G=1
{
E(Y 1

i1 − Y 0
i1 | Xi = x, Gi = 2, Si = 1)

}

= EX|G=1
{
E(Y 1

i1 | Xi = x, Gi = 2, Si = 1)
}

− EX|G=1
{
E(Y 0

i0 | Xi = x, Gi = 1, Si = 1)
}

−

[
EX|G=1

{
E(Y 0

i1 | Xi = x, Gi = 4, Si = 1)

}

− EX|G=1

{
E[Y 0

i0 | Xi = x, Gi = 3, Si = 1]

}]
.

An important consideration is that for units with Gi = 2 or Gi = 4, who are observable in 
the post-intervention periods, baseline covariates Xi not affected by the intervention may 
not be fully available in real data applications. For example, for high school student par-
ticipants in the 2017 survey, BMI information measured before the intervention might be 
unavailable. In such cases, we may need to rely only on time-invariant demographic infor-
mation, such as race/ethnicity. In practice, this limited availability of baseline covariates 
can undermine Assumptions 3–6 when conditioning only on a small number of available 
baseline covariates.

3.2  Propensity scores with survey weights

In this section, we introduce an new estimator for τ  in (3) that incorporates both the esti-
mated propensity scores and the survey weights. The purpose of using propensity scores is 
to adjust for compositional changes over time (Stuart et al. 2014), while the given survey 
weights are used to ensure that each sample accurately represents the target population.

In our contexts, propensity scores are the probability of being assigned to group g given 
the baseline covariates of x within the survey population (i.e., conditioning on Si = 1): 
eg(x) = Pr(Gi = g | Xi = x, Si = 1) across g ∈ G and for x ∈ X . As this is the prob-
ability based on the survey, it can be estimated, such as using multinomial logistic regres-
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sion with survey participants, considering that G may contain more than two groups. On the 
other hand, survey sampling probability p(x) := Pr(Si = 1 | Xi = x) refers to the prob-
ability of being selected into the sample from the population, conditional baseline covariates 
x ∈ X . Although the same set of covariates X is conditioned on in both the group assign-
ment and sampling mechanisms, it is not necessary for each covariate in X to be correlated 
with both, as long as X provides a sufficient set of covariates that satisfies the assumptions 
in Sect. 3.1. By taking the inverse of the probability of being selected, sampling weights 
ensure that each participant is appropriately represented in the analysis. This adjustment 
involves up-weighting participants who were less likely to be selected into the sample and 
down-weighting those more likely to be selected.

Combining the estimated propensity scores êg(xi) with the known survey sampling 
probability p(xi) together across survey participants, we weight each participant i with Si 
= 1 in group g ∈ G by:

	 {ê1(xi)/(êg(xi)} × (1/p(xi)).

The first component of the combined weight, ê1(xi)/êg(xi), adjusts for compositional dif-
ferences in group g to the sampled group of g = 1, given our target population consists of 
units with G = 1. This is similar to the propensity score weight used for the ATT, where 
each subject in the control group is weighted by the ratio of the probability of being treated 
to the probability of being in the control group. However, the first component, which uses 
the estimated propensity score, adjusts the covariate distribution to match the treated group 
in the sample (e.g., high school students in Philadelphia who actually participated in the 
survey in 2015). To reflect their sampling probability, the second component of 1/p(xi) is 
added to the combined weight.

We demonstrate in the following theorem that this weighted estimator is consistent when 
the propensity scores are correctly specified. This is because the combined weight accounts 
for covariate imbalance and survey sampling.

Theorem 1  Under Assumptions  1–6, with correctly specified êg(x), the following 
results hold for four combinations: (g, t, z, d) = (1, 0, 0, 1), (g, t, z, d) = (2, 1, 1, 1), 
(g, t, z, d) = (3, 0, 0, 0), and (g, t, z, d) = (4, 1, 0, 0).

	

∑N
i=1 SiI(Gi = g)ê1(xi){êg(xi)p(xi)}−1Yit∑N

i=1 SiI(Gi = 1)/p(xi)
N→∞−→ EX|G=1 {E(Y z

it | Xi = x, Di = d, Si = 1)} .

Based on the results of Theorem 1, we can construct the IPW estimator for τ  in a DiD form.

Corollary 1  Under Assumptions 1–6, the following estimator τ̂ipw is a consistent estimator 
for τ  in (3), when êg(x) is correctly specified (g ∈ G).

	

τ̂ipw = 1∑N
i=1 SiI(Gi = 1)/p(xi)

[
N∑

i=1

SiI(Gi = 2)ê1(Xi)
ê2(Xi)p(Xi)

Yit −
N∑

i=1

SiI(Gi = 1)
p(Xi)

Yit

−

{
N∑

i=1

SiI(Gi = 4)ê1(Xi)
ê4(Xi)p(Xi)

Yit −
N∑

i=1

SiI(Gi = 3)ê1(Xi)
ê3(Xi)p(Xi)

Yit

}]
.

� (8)
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More details and proof of this estimator can be found in Appendix A1.

4  Simulation studies

4.1  Simulation settings

In this section, we demonstrate the finite sample performance of the proposed estimator, 
τ̂ipw in (8), using the simulated RCS survey data. We consider total population of size N 
(=500, 1000, 2000). We compare our proposed estimator τ̂ipw with other two IPW estima-
tors, τ̂pw and τ̂sw:

	

τ̂pw = 1
N∑

i=1
SiI(Gi = 1)

[
N∑

i=1

SiI(Gi = 2)ê1(Xi)
ê2(Xi)

Yit −
N∑

i=1

SiI(Gi = 1)Yit

−

{
N∑

i=1

SiI(Gi = 4)ê1(Xi)
ê4(Xi)

Yit −
N∑

i=1

SiI(Gi = 3)ê1(Xi)
ê3(Xi)

Yit

}]

τ̂sw = 1
N∑

i=1
SiI(Gi = 2)/p(xi)

N∑
i=1

SiI(Gi = 2)
p(Xi)

Yit

− 1
N∑

i=1
SiI(Gi = 1)/p(xi)

N∑
i=1

SiI(Gi = 1)
p(Xi)

Yit

−

{
1∑N

i=1 SiI(Gi = 4)/p(xi)

N∑
i=1

SiI(Gi = 4)
p(Xi)

Yit

− 1∑N
i=1 SiI(Gi = 3)/p(xi)

N∑
i=1

SiI(Gi = 3)
p(Xi)

Yit

}
.

In Appendix  A1, we demonstrate that under the same conditions in Cor-
ollary  1, τ̂pw and τ̂sw converge to E(Y 1

i1 − Y 0
i1 | Gi = 1, Si = 1) and 

E(Y 1
i1 | Gi = 2) − E(Y 0

i0 | Gi = 1) − {E(Y 0
i1 | Gi = 4) − E(Y 0

i0 | Gi = 3)}, respectively.
We generate the baseline covariates Xi = (Xi1, Xi2, Xi3, Xi4), survey inclusion indica-

tor Si, and the group membership indicator Gi as follows, independently across i:

	

(Xi1, Xi2)T ∼MVN
((0

0
)

,
( 2 0.3

0.3 1
))

,

Xi3 ∼Bernoulli(0.5),
Xi4 ∼Uniform(0, 1),

Si ∼Bernoulli(logit−1(η0 + η1Xi1 + η2Xi2 + η3Xi3 + η4Xi4)),
Gi ∼Multinomial(δ1(Xi), δ2(Xi), δ3(Xi), δ4(Xi)),
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where δg(Xi) = ℓg(Xi)/
∑4

g=1 ℓg(Xi) with ℓ(x) = (ℓ1(Xi), ℓ2(Xi), ℓ3(Xi), ℓ4(Xi)) 

= (1, exp(γ20 +
∑4

k=1 γ2kxk), exp(γ30 +
∑4

k=1 γ3kxk), exp(γ40 +
∑4

k=1 γ4kxk))T , 
following a multinomial model. We set the parameter values as follows. For the survey sam-
pling probability, we use η = (0.5, 0.5, −1.0, 1.0, 0.0)T . For the group assignment model, the 
parameters are specified as γ2 = (1, −0.5, −0.5, 0.0, −1.0)T , γ3 = (0.0, 1.0, 0.2, 0.5, 0.5)T , 
and γ4 = (−1, 0.5, 1.0, 0.0, −0.5)T . Under this setting, covariate X4 affects the group 
assignment but not survey sampling.

The potential outcomes are generated according to the following linear relationships for 
each i (= 1, . . . , N) and t (= 0, 1),

	

Y 0
it = 0.5Xi1 + 0.05Xi2 + 0.2Xi3 + 0.15Xi4 + Di

+ 0.5I(t = 1) + ϵi, ϵi ∼ N(0, 1),
Y 1

it = Y 0
it + 1 + 0.5Xi1 − 0.3Xi2 + 0.5Xi3.

The above models incorporate a treatment group-specific outcome intercept 
(Di = I(Gi ≤ 2)), a time trend (0.5I(t = 1)), and the treatment effect heterogeneity by 
Xi, while satisfying the counterfactual parallel trends assumption and group ignorability. 
For each estimator, including our proposed τ̂ipw, we calculate the variance using bootstrap 
methods, taking advantage of the independence among survey participants sampled across 
different years, in contrast to panel data. We replicate each simulation setting 500 times, and 
use 100 bootstrap samples for each time.

4.2  Simulation results

We first investigate the role of both propensity score-based and survey sampling probability-
based weighting in reducing imbalances in observed baseline covariates. Table 1 presents 
covariate (im)balance measures, reported as standardized mean differences (SMD), for each 
covariate in (X1, X2, X3, X4), comparing the target population with G = 1 to the popu-
lation under each weighting scheme. When the sample is not weighted (“Unweighted”), 
substantial imbalance exists across the covariates. Weighting by propensity scores only 
(“PS-weighted”) or by sampling weights only (“SW-weighted”) somewhat reduces this 
imbalance. However, when the sample is weighted by both propensity scores and sampling 
probabilities (“(PS+SW)-weighted”), the SMDs are reduced to near zero across all covari-
ates, demonstrating the effectiveness of our proposed weights in addressing heterogeneity 
across both treatment groups and survey samples.

Table 2 presents the bias, root mean squared error (RMSE), average length of 95% boot-
strap-based confidence intervals, and the coverage rates for 95% confidence intervals for 
τ̂ipw, τ̂pw, and τ̂sw, when our target estimand is τ  as defined in Eq. (3). The bias, RMSE, 
and confidence interval lengths are averaged over 500 replicates. For coverage, we present 
the results based on the Monte Carlo variance across 500 replicates (CRMC) and the boot-
strap variance within each Monte Carlo experiment (CRBoot). The results show that our 
proposed estimator, τ̂ipw, exhibits decreasing bias and RMSE, along with approximately 
nominal coverage rates. The bootstrap-based coverage rates are reasonably well-behaved 
as the Monte Carlo variance-based coverage rates. However, the bootstrap variance tends 
to be slightly conservative when the population size is relatively small. The estimators τ̂pw 
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and τ̂sw show substantial bias and undercoverage of the confidence intervals, which do not 
necessarily improve with increasing population size.

In Appendix Section  A2, we present the simula-
tion results for estimating E(Y 1

i1 − Y 0
i1 | Gi = 1, Si = 1) and 

E(Y 1
i1 | Gi = 2) − E(Y 0

i0 | Gi = 1) − {E(Y 0
i1 | Gi = 4) − E(Y 0

i0 | Gi = 3)}. The result 
supports our theoretical derivations about the asymptotic behaviors of the two comparisons, 
τ̂pw and τ̂sw. This indicates that the estimator excluding either weight—propensity score or 

Table 2  The performance of the proposed estimator and two other comparisons for τ  in (3)
Estimator N Bias RMSE CI length CRMC CRBoot

τ̂ipw 500 0.18 0.77 3.04 0.95 0.94
1000 0.13 0.51 2.03 0.94 0.94
2000 0.11 0.35 1.33 0.93 0.93

τ̂pw 500 0.38 0.85 2.96 0.93 0.89
1000 0.32 0.57 1.95 0.90 0.87
2000 0.33 0.45 1.29 0.82 0.79

τ̂sw 500 − 0.28 0.58 1.80 0.92 0.87
1000 − 0.23 0.44 1.29 0.90 0.84
2000 − 0.24 0.35 0.94 0.83 0.80

RMSE denotes the root mean squared error; CI length refers to the average length of 95% bootstrap-based 
confidence intervals; CRMC indicates the coverage rate of 95% confidence intervals using Monte Carlo 
variance; and CRBoot indicates the coverage rate using bootstrap variance

N Weighting scheme X1 X2 X3 X4

500 Unweighted − 0.40 (0.12) 0.26 
(0.11)

− 0.21 
(0.11)

0.09 
(0.11)

PS-weighted − 0.17 (0.11) 0.22 
(0.10)

− 0.14 
(0.11)

0.00 
(0.11)

SW-weighted − 0.24 (0.13) 0.03 
(0.12)

− 0.08 
(0.11)

0.09 
(0.11)

(PS+SW)-weighted − 0.03 (0.13) − 0.02 
(0.12)

− 0.01 
(0.11)

0.00 
(0.12)

1000 Unweighted − 0.40 (0.09) 0.26 
(0.09)

− 0.21 
(0.07)

0.09 
(0.08)

PS-weighted − 0.17 (0.07) 0.22 
(0.08)

− 0.13 
(0.08)

0.01 
(0.08)

SW-weighted − 0.25 (0.09) 0.03 
(0.09)

− 0.08 
(0.08)

0.09 
(0.08)

(PS+SW)-weighted − 0.03 (0.09) − 0.02 
(0.10)

0.00 
(0.08)

0.00 
(0.08)

2000 Unweighted − 0.40 (0.06) 0.26 
(0.05)

− 0.21 
(0.05)

0.09 
(0.05)

PS-weighted − 0.16 (0.05) 0.22 
(0.05)

− 0.13 
(0.05)

0.01 
(0.05)

SW-weighted − 0.25 (0.06) 0.03 
(0.06)

− 0.08 
(0.05)

0.09 
(0.06)

(PS+SW)-weighted − 0.02 (0.07) − 0.02 
(0.06)

0.00 
(0.06)

0.00 
(0.05)

Table 1  Average standardized 
mean difference (SMD) and its 
sample variance across 500 repli-
cates for each covariate between 
the weighted population and the 
target population with G = 1

“PS-weighted” refers to 
the population weighted 
by propensity scores 
only, as in the estimator 
τ̂pw; “SW-weighted” refers 
to the population weighted by 
sampling probability weights 
only, as in the estimator τ̂sw; 
“(PS+SW)-weighted” refers to 
the population weighted by both 
propensity scores and sampling 
probabilities, as proposed in 
this paper
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survey weights—provides a consistent estimator for a different effect, which is often not the 
primary focus in policy effect evaluation.

5  Data Application

In our data application study, we aim to evaluate the effect of the Philadelphia beverage tax 
on soda consumption among high school students. Sugar-sweetened beverages are known to 
be a significant source of calories for U.S. youth aged 14–18 years (Reedy and Krebs-Smith 
2010; Miller et al. 2016). Their consumption has been shown to be highly associated with 
obesity, cardiovascular health, and even academic performance (Malik et al. 2013; Kosova 
et al. 2013; Park et al. 2012). If the beverage tax proves effective in reducing soda consump-
tion among high school students in Philadelphia, similar tax policies could be implemented 
in other regions to improve adolescent health.

The YRBS data provide a school-district level biennial survey, managed by the Centers 
for Disease Control and Prevention (CDC). We use data collected from September 2013 
to December 2019, providing two time points before the excise tax and two points after 
the excise tax (T = 4). In addition to Philadelphia, we use survey participants from six 
other cities that had not implemented the beverage tax until 2019, for control groups: New 
York City, NY (NYC), Orange County, FL (OL), Palm Beach County, FL (PB), Broward 
County, FL (FT), San Diego, CA (SA), and Los Angeles, CA (LO). High school students 
were sampled through a two-stage process. In the first stage, high schools were selected 
with a probability proportional to their enrollment size. In the second stage, the classes and 
periods for student participation in the survey were randomly selected. The YRBS data 
provide weights that reflect the representativeness of the population of students from which 
the sample was drawn. These weights are calculated using the inverse of the probability of 
selection from the two-stage sampling mechanism and are further adjusted for school and 
student non-response based on participants’ sex, grade, and race/ethnicity.

The left panel of Fig. 1 shows the changes in the number of survey participants across cit-
ies at four different time points. Within each city, there are no substantial variations in par-
ticipant numbers, although New York City shows a noticeably larger student sample, likely 
due to its larger high school student population. The right panel of Fig. 1 presents the time 
trend of average weekly soda consumption in Philadelphia and six other control cities across 
four survey periods. The vertical lines of each panel indicate the time at implementation of 
the beverage tax in Philadelphia. Overall, there is a downward trend in soda consumption 
across all cities, with a more pronounced decline in Philadelphia, where the consumption 
levels before the excise tax were higher than in other cities.

In our analysis, we apply our estimator, τ̂ipw in (8), to the YRBS data to examine the 
effect of the beverage tax on soda consumption among high school students in Philadel-
phia. The outcome is measured using a survey question on weekly soda consumption, with 
response options rescaled to approximate average weekly intake. For the propensity score 
model, we use a multinomial regression that adjusts for sex, age, BMI, and race/ethnicity 
assuming that these covariates are not affected by the intervention. Table A5 in Appen-
dix A3 presents the distribution of each variable across four time periods. We exclude 
12.9% of study participants due to missing covariate values, resulting in a final sample of 
n = 60, 084 survey participants. The two pre-intervention periods (2013 and 2015) and 

1 3



Health Services and Outcomes Research Methodology

the two post-intervention periods (2017 and 2019) are grouped to construct four groups as 
defined in Eq. (1). Our target population is high school students in Philadelphia during the 
pre-intervention periods. Table 3 compares the distribution of baseline covariates between 
the pre- and post-intervention periods within Philadelphia and other control cities (e.g., 
across G = 1, 2, 3, 4). Compared to participants from other control cities, those in Phila-
delphia had, on average, a higher BMI and were more likely to identify as Black or African 
American. Within Philadelphia, there was little difference in baseline covariates between 
participants during the pre- (G = 1) and post- (G = 2) intervention periods.

We implement three weighting schemes (Table 4). Table A6 in Appendix A3 presents 
covariate (im)balance for each variable in the propensity score model, comparing the target 
population with control populations reweighted under each scheme. We then compare our 
proposed estimator with the other IPW estimators introduced in the previous section. To 
obtain their standard errors, we use the bootstrap method that draws each survey sample 
with replacement and adjusts the drawn samples using their survey weights. Table 4 shows 
the point estimates and the corresponding 95% confidence interval. The point estimates 
from all three estimators are negative. With our proposed estimator of τ̂ipw, we fail to reject 
the null of no effect of the beverage tax on soda consumption among high school students 
in Philadelphia, whereas the other two estimators do reject the null. This could be due to the 
larger variability of τ̂ipw compared to the other two, or because the difference in the out-
come trends can be explained by sample differences across the groups. The latter explana-
tion seems plausible, as the other two estimators, τ̂pw and τ̂sw, show significant effect with 
slightly reduced variability. However, these two estimators do not account for heterogeneity 
across both treatment groups and survey samples. The results from these estimators instead 
suggest that the beverage tax could be effective in reducing soda consumption for survey 
participants during the pre-intervention periods and for high school students in the mixed 
groups, but not for those in Philadelphia during the pre-intervention periods. These results 
demonstrate that our conclusion regarding the policy effect can easily shift with the choice 
of target estimand.
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Fig. 1  (Left) The number of survey participants; (right) the average servings of soda consumption per 
week among the participants across cities at four different time points
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Characteristic G = 1 G = 2 GG = 3 G = 4
Sample size 2375 2193 28,380 27,136
Sex
   Female 1313 

(55%)
1187 (54%) 14,665 

(52%)
14,344 
(53%)

   Male 1062 
(45%)

1006 (46%) 13,715 
(48%)

12,792 
(47%)

Age
   ≤ 12 years 3 (0.1%) 2 (< 0.1%) 47 (0.2%) 44 

(0.2%)
   13 years 1 

(< 0.1%)
1 (< 0.1%) 318 (1.1%) 347 

(1.3%)
   14 years 214 

(9.0%)
189 (8.6%) 4290 (15%) 4589 

(17%)
   15 years 555 

(23%)
499 (23%) 7064 (25%) 7008 

(26%)
   16 years 707 

(30%)
675 (31%) 7214 (25%) 7019 

(26%)
   17 years 548 

(23%)
497 (23%) 6795 (24%) 6077 

(22%)
   ≥ 18 years 347 

(15%)
330 (15%) 2652 

(9.3%)
2052 
(7.6%)

BMI
   Mean (SD) 23.6 (5.0) 23.9 (5.4) 23.0 (4.8) 23.2 

(5.1)
Race/ethnicity
   White 331 

(14%)
261 (12%) 5475 (19%) 4800 

(18%)
   Black or African 
American

1066 
(45%)

947 (43%) 5884 (21%) 5447 
(20%)

   Hispanic/Latino 504 
(21%)

542 (25%) 12,437 
(44%)

12,213 
(45%)

   All other races 474 
(20%)

443 (20%) 4584 (16%) 4676 
(17%)

Survey weights
   Mean (SD) 22 (12) 23 (14) 34 (31) 32 (27)
Soda usage (per week)
   0 581 

(24%)
709 (32%) 8307 (29%) 9243 

(34%)
   1–3 893 

(38%)
852 (39%) 11,448 

(40%)
11,231 
(41%)

   4–6 406 
(17%)

304 (14%) 4249 (15%) 3398 
(13%)

   7–13 142 
(6.0%)

112 (5.1%) 1551 
(5.5%)

1235 
(4.6%)

   14–20 135 
(5.7%)

94 (4.3%) 1214 
(4.3%)

866 
(3.2%)

   21–27 97 (4.1%) 47 (2.1%) 616 (2.2%) 487 
(1.8%)

   ≥ 28 121 
(5.1%)

75 (3.4%) 995 (3.5%) 676 
(2.5%)

Table 3  A comparison of key 
variables between four different 
groups
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6  Discussion

In this paper, we propose a propensity score-weighted DiD estimator that integrates sur-
vey weights. Our estimator is designed to address covariate imbalances between multiple 
groups, collected at different time points in RCS survey data. We clearly define the target 
estimand and outline the identification assumptions. We demonstrate that, in addition to the 
counterfactual parallel trends assumption, ignorability of the group and the sampling vari-
ables conditional on baseline covariates is essential with RCS survey data.

There are a few limitations of our proposed approach. First, our proposed estimator relies 
on the correct specification of the propensity score model. If key covariates are omitted 
or the modeling relationships are incorrect, the estimated weights could easily lead to a 
biased causal estimate. Additionally, some covariates collected in the survey (e.g., BMI 
measured in 2017) may have been affected by the intervention. To reduce the impact of 
model specification, researchers can consider leveraging a wide range of machine learning 
tools within the framework of double/debiased machine learning approaches (Chernozhu-
kov et  al. 2018). Efficiency and robustness can be improved by incorporating outcome 
regression into the IPW estimator, as proposed in the related DiD literature (Sant’Anna and 
Xu 2023). Further research is needed to appropriately integrate survey design features into 
the outcome regression model. Second, we assume the survey weights provided in the data-
set are correct and known. If these weights are not correct, this can easily result in biased 
estimates. Moreover, as baseline covariates play a crucial role in constructing propensity 
scores, we excluded observations with missing covariate values from the analysis. However, 
this exclusion may alter both the study sample and the target population, as only a subset of 
the data is used and weighted. Lastly, there exist several different approaches to incorporat-
ing the sampling design in a bootstrap method (Rust and Rao 1996; Beaumont and Charest 
2012; Kim et al. 2024). Given the complexity of the sampling design, research questions, 
and analytic methods, researchers may choose different approaches for variance estimation 
using bootstrap techniques. It is future work to examine the derivation of an analytic vari-
ance for the IPW-type estimator with non-binary treatment variables (e.g., Gi) using an 
M-estimation framework (Hirano et al. 2003; Kostouraki et al. 2024).

Future research could also explore extending our methods to incorporate estimated survey 
weights, particularly when auxiliary data (e.g., baseline covariates of all U.S. high school 
students or an instrumental variable) is available (Wang et al. 2014; Miao et al. 2025). This 
would broaden the generalizability of the causal effect beyond the treatment population.

Supplementary Information  The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​
/​1​0​.​1​0​0​7​/​s​1​0​7​4​2​-​0​2​5​-​0​0​3​6​4​-​7​​​​​.​​
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Estimator Weighting type Point estimate (95% CI)

τ̂ipw ×(1/p(x))×(1/p(x)) − 0.096 (− 0.685, 0.493)

τ̂pw {ê1(x)/(êg(x)} − 0.587 (− 0.999, − 0.176)

τ̂sw (1/p(x)) − 0.923 (− 1.431, − 0.415)

Table 4  The results of the three 
weighted estimators applied to 
the YRBS data to evaluate the 
effect of the beverage tax to soda 
consumption
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Supplementary Materials

Appendix A1 Proofs

Proof of Theorem 1. For simplicity, we focus on g = 2 where (t, z, d) = (1, 1, 1). Then
by the Law of Large Numbers, when the propensity scores are correctly specified,
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where π1 = Pr(Gi = 1). Then by Assumptions 1–6.
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Similarly, let us prove the consistency of τ̂pw −→ E(Y 1
i1 − Y 0

i1 | Gi = 1, Si = 1) and
τ̂sw −→ E(Y 1

i1 | Gi = 2) − E(Y 0
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i1 | Gi = 4) − E(Y 0
i0 | Gi = 3)},

focusing on g = 2 case.
Consider τ̂pw first.
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Now consider τ̂sw.
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Appendix A2 Additional simulation study results

A2.1 Comparison of results across estimands

In this section, we investigate whether our two comparison estimators, τ̂pw and τ̂sw,
are a consistent estimator for different estimands through simulations. We use the
same data-generating setting and the performance metrics as in Section 4 of the main
text but change the target estimands to E(Y 1

i1 − Y 0
i1 | Gi = 1, Si = 1) (Table A1) and

E(Y 1
i1 | Gi = 2) − E(Y 0

i0 | Gi = 1) − {E(Y 0
i1 | Gi = 4) − E(Y 0

i0 | Gi = 3)} (Table A2),
respectively.

Estimator N Bias RMSE CI length CRMC CRBoot

τ̂ipw 500 -0.00 0.75 3.04 0.96 0.96
1000 -0.06 0.50 2.03 0.96 0.97
2000 -0.07 0.34 1.33 0.95 0.96

τ̂pw 500 0.20 0.79 2.96 0.95 0.92
1000 0.14 0.49 1.95 0.94 0.92
2000 0.14 0.35 1.29 0.93 0.91

τ̂sw 500 -0.46 0.69 1.80 0.84 0.79
1000 -0.42 0.56 1.29 0.79 0.72
2000 -0.42 0.49 0.94 0.59 0.57

Table A1: The performance of the proposed estimator and two other comparisons
for E(Y 1

i1 − Y 0
i1 | Gi = 1, Si = 1). RMSE denotes the root mean squared error; CI

length refers to the average length of 95% bootstrap-based confidence intervals; CRMC

indicates the coverage rate of 95% confidence intervals using Monte Carlo variance;
and CRBoot indicates the coverage rate using bootstrap variance.

Tables A1 and A2 show the performance of the three estimators, τ̂ipw, τ̂pw, and
τ̂sw, for E(Y 1

i1 − Y 0
i1 | Gi = 1, Si = 1) and E(Y 1

i1 | Gi = 2) − E(Y 0
i0 | Gi = 1) −

{E(Y 0
i1 | Gi = 4) − E(Y 0

i0 | Gi = 3)}, respectively. While the performance of τ̂ipw
demonstrates the best performance for τ , as shown in Table 2 in the main text, the
estimator τ̂pw exhibits decreasing bias as N increases for E(Y 1

i1 − Y 0
i1 | Gi = 1, Si = 1)

and the nominal coverage rates, with the improvement as N increases (Table A1).
On the other hand, when we do not use propensity scores in the estimator, like in
τ̂sw, it actually estimates the difference in differences among four different groups,
which is not necessarily equivalent to τ . Table A2 demonstrates that the estimator
τ̂sw results in the smallest bias and RMSE among the three estimators in estimating
E(Y 1

i1 | Gi = 2)− E(Y 0
i0 | Gi = 1)− {E(Y 0

i1 | Gi = 4)− E(Y 0
i0 | Gi = 3)}.

A2.2 Impact of model misspecification

In this section, we investigate the impact of model misspecification of {eg(x)}4g=1 and
p(x) under the same data-generating setting as in Section 4 of the main text with
N = 1000. Here, the key covariate X1 is omitted from the multinomial regression
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Estimator N Bias RMSE CI length CRMC CRBoot

τ̂ipw 500 0.42 0.84 3.04 0.93 0.91
1000 0.36 0.59 2.03 0.91 0.89
2000 0.35 0.47 1.33 0.84 0.82

τ̂pw 500 0.34 0.67 2.30 0.93 0.91
1000 0.55 0.71 1.95 0.79 0.76
2000 0.56 0.63 1.29 0.59 0.57

τ̂sw 500 -0.04 0.36 1.80 0.98 0.99
1000 -0.00 0.26 1.29 0.99 0.99
2000 -0.00 0.18 0.94 0.99 0.99

Table A2: The performance of the proposed estimator and two other comparisons
for E(Y 1

i1 | Gi = 2) − E(Y 0
i0 | Gi = 1) − {E(Y 0

i1 | Gi = 4) − E(Y 0
i0 | Gi = 3)}.

RMSE denotes the root mean squared error; CI length refers to the average length of
95% bootstrap-based confidence intervals; CRMC indicates the coverage rate of 95%
confidence intervals using Monte Carlo variance; and CRBoot indicates the coverage
rate using bootstrap variance.

used to estimate the propensity scores (“Propensity score misspecification”) and the
specification of the survey weight probabilities (“Survey weight misspecification”).

Propensity score misspecification
Weighting scheme X1 X2 X3 X4

Unweighted -0.40 (0.09) 0.26 (0.09) -0.21 (0.07) 0.09 (0.08)
PS-weighted -0.40 (0.08) 0.23 (0.07) -0.13 (0.07) 0.01 (0.07)
SW-weighted -0.25 (0.09) 0.03 (0.09) -0.08 (0.08) 0.09 (0.08)
(PS+SW)-weighted -0.21 (0.09) 0.00 (0.09) -0.01 (0.07) 0.00 (0.07)

Survey weight misspecification
Weighting scheme X1 X2 X3 X4

Unweighted -0.40 (0.09) 0.26 (0.09) -0.21 (0.07) 0.09 (0.08)
PS-weighted -0.17 (0.07) 0.22 (0.08) -0.13 (0.08) 0.01 (0.08)
SW-weighted -0.52 (0.09) -0.05 (0.09) -0.07 (0.08) 0.09 (0.08)
(PS+SW)-weighted -0.20 (0.07) -0.02 (0.09) 0.00 (0.08) 0.01 (0.08)

Table A3: Average standardized mean difference (SMD) and its sample variance
across 500 replicates for each covariate between the weighted population and the target
population with G = 1. “PS-weighted” refers to the population weighted by propensity
scores only, as in the estimator τ̂pw; “SW-weighted” refers to the population weighted
by sampling weights only, as in the estimator τ̂sw; “(PS+SW)-weighted” refers to the
population weighted by both propensity scores and sampling probabilities, as proposed
in this paper.

Table A3 presents the covariate (im)balance measures (SMD) for each covariate in
(X1, X2, X3, X4). Compared to the results in Table 1 in the main text, the reduction
in imbalances for each covariate (X2, X3, X4) is similar across the different weighting
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schemes. However, imbalance in the omitted variable X1 under the propensity score
in the “PS-weighted” and “(PS+SW)-weighted” remains substantial. Moreover, under
survey weight misspecification, the imbalance in the omitted variable X1 (highlighted
in yellow) in the “SW-weighted” scheme is actually larger than in the unweighted
population.

Propensity score misspecification
Estimator Bias RMSE CI length CRMC CRBoot

τ̂ipw -0.17 0.47 1.65 0.93 0.93
τ̂pw 0.04 0.47 1.80 0.95 0.94
τ̂sw -0.23 0.44 1.30 0.90 0.85

Survey weight misspecification
Estimator Bias RMSE CI length CRMC CRBoot

τ̂ipw 0.22 0.52 1.98 0.92 0.92
τ̂pw 0.32 0.57 1.95 0.90 0.87
τ̂sw -0.17 0.40 1.27 0.91 0.87

Table A4: The performance of the proposed estimator and two other comparisons for
τ . RMSE denotes the root mean squared error; CI length refers to the average length
of 95% bootstrap-based confidence intervals; CRMC indicates the coverage rate of 95%
confidence intervals using Monte Carlo variance; and CRBoot indicates the coverage
rate using bootstrap variance.

Table A4 shows the impact of omitting X1 on the performance of each estimator.
Compared to the results in Table 2, the overall performance does not differ substan-
tially, but the direction of bias in the proposed estimator, τ̂ipw differs from that in
Table 2 under propensity score misspecification. These estimators also exhibit less
variability (shorter confidence interval lengths), possibly due to the reduced number of
covariates in the propensity score estimation. Overall, the results suggest some degree
of robustness to model misspecification; however, in general, we expect that misspec-
ification of either the propensity score or the survey weights can affect the empirical
results.

Appendix A3 Additional data application results

Table A5 presents the summary statistics across four different periods, with missing
values for sex, age, BMI, and race/ethnicity.
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Characteristic N 2013 2015 2017 2019

City Name 69,013 16,874 17,999 17,754 16,386
FT 1,323 (7.8%) 1,349 (7.5%) 904 (5.1%) 1,147 (7.0%)
LO 1,543 (9.1%) 2,228 (12%) 1,357 (7.6%) 1,246 (7.6%)
NYC 8,124 (48%) 6,860 (38%) 8,129 (46%) 7,766 (47%)
OL 1,602 (9.5%) 1,441 (8.0%) 1,300 (7.3%) 1,271 (7.8%)
PB 1,774 (11%) 2,332 (13%) 2,182 (12%) 2,488 (15%)
PH 1,170 (6.9%) 1,509 (8.4%) 1,458 (8.2%) 1,091 (6.7%)
SA 1,338 (7.9%) 2,280 (13%) 2,424 (14%) 1,377 (8.4%)

Sex 68,430
Female 8,865 (53%) 9,223 (52%) 9,283 (53%) 8,611 (53%)
Male 7,912 (47%) 8,643 (48%) 8,316 (47%) 7,577 (47%)

Age 68,788
≤ 12 Yr 67 (0.4%) 86 (0.5%) 83 (0.5%) 106 (0.6%)
13 Yr 243 (1.4%) 170 (0.9%) 247 (1.4%) 227 (1.4%)
14 Yr 2,688 (16%) 2,516 (14%) 3,018 (17%) 2,671 (16%)
15 Yr 4,163 (25%) 4,463 (25%) 4,578 (26%) 4,145 (25%)
16 Yr 4,325 (26%) 4,530 (25%) 4,509 (25%) 4,290 (26%)
17 Yr 3,736 (22%) 4,408 (25%) 3,814 (22%) 3,607 (22%)
≥ 18 Yr 1,607 (9.5%) 1,762 (9.8%) 1,447 (8.2%) 1,282 (7.9%)

BMI 62,304
Mean (SD) 23.0 (5.2) 23.2 (5.1) 23.2 (5.2) 23.3 (6.0)

Race/ethnicity 66,463
White 3,153 (19%) 2,998 (17%) 2,902 (17%) 2,567 (16%)
Black or African American 3,717 (23%) 3,910 (23%) 3,651 (21%) 3,556 (23%)
Hispanic/Latino 6,814 (42%) 7,528 (43%) 7,438 (44%) 7,088 (45%)
All Other Races 2,595 (16%) 2,918 (17%) 3,057 (18%) 2,571 (16%)

Survey weights 69,013
Mean (SD) 36 (32) 31 (29) 29 (26) 33 (26)

Soda Usage (per week) 69,013
0 4,764 (28%) 5,371 (30%) 5,882 (33%) 5,702 (35%)
1-3 6,655 (39%) 7,211 (40%) 7,170 (40%) 6,753 (41%)
4-6 2,624 (16%) 2,592 (14%) 2,237 (13%) 2,066 (13%)
7-13 959 (5.7%) 994 (5.5%) 891 (5.0%) 723 (4.4%)
14-20 788 (4.7%) 760 (4.2%) 648 (3.6%) 504 (3.1%)
21-27 410 (2.4%) 413 (2.3%) 380 (2.1%) 258 (1.6%)
≥28 674 (4.0%) 658 (3.7%) 546 (3.1%) 380 (2.3%)

Table A5: Summary table of the YRBS data across four time periods.

Table A6 presents SMDs for each covariate included in the propensity score model,
comparing the target population (G = 1) to weighted control populations, where units
from the other groups (G = 2, 3, 4) are treated as controls. When applying combined
propensity score and sampling probability weights (“(PS+SW)-weighted”), covariate
imbalance is generally reduced across all variables. In contrast, weighting only by
propensity scores or sampling probabilities results in residual imbalance in certain
covariates (e.g., Race/ethnicity: Black or African American).
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Characteristic Unweighted PS-weighted SW-weighted (PS + SW)-weighted

Adjusted sample size 59542.81 16038.06 17509.25 34237.09
Sex 0.0144 0.0428 -0.0083 0.0202
Age

≤ 12 Yr -0.0009 -0.0005 -0.0010 -0.0010
13 Yr -0.0108 -0.0013 -0.0107 -0.0013
14 Yr -0.0660 0.0013 -0.0688 -0.0085
15 Yr -0.0194 0.0007 -0.0198 0.0002
16 Yr 0.0182 -0.0202 0.0298 -0.0048
17 Yr 0.0014 0.0017 0.0067 0.0123
≥ 18 Yr 0.0774 0.0183 0.0638 0.0031

BMI 0.1042 0.0149 0.1048 0.0144
Race/ethnicity

White -0.0213 0.0224 -0.0348 0.0123
Black or African American 0.3267 0.0899 0.2997 0.0367
Hispanic/Latino -0.2644 -0.0406 -0.2515 -0.0166
All Other Races -0.0410 -0.0718 -0.0133 -0.0325

Table A6: The SMD for each covariate is calculated between the weighted population
and the target population withG = 1. “PS-weighted” refers to weighting by propensity
scores only; “SW-weighted” refers to weighting by sampling probabilities only; and
“(PS+SW)-weighted” refers to weighting by both propensity scores and sampling
probabilities, as proposed in this paper.
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