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ABSTRACT

Difference-in-differences (DiD) is a popular observational causal inference method in health policy, employed to evaluate the

real-world impact of policies and programs. To estimate treatment effects, DiD relies on a “parallel trends assumption” that treat-

ment and comparison groups would have had parallel trajectories on average in the absence of an intervention. Recent years have

seen both growing use of DiD in health policy and medicine and rapid advancements in DiD methods. To support DiD imple-

mentation in these fields, this paper reviews and synthesizes best practices and recent innovations. We provide recommendations

to practitioners in four areas: (1) assessing causal assumptions; (2) adjusting for covariates and other approaches to relax causal

assumptions; (3) accounting for staggered treatment timing; and (4) conducting robust inference, especially when normal-based

clustered standard errors are inappropriate. For each, we explain challenges and common pitfalls in traditional DiD and recom-

mend methods to address these. We explore current treatment of these topics through a focused literature review of medical DiD

studies.

1 | Introduction

Difference-in-differences (DiD) is a popular method for observa-
tional causal inference in health policy. DiD evaluates the impact
of policies and programs using time-series data by comparing
outcome trajectories between treatment and non-experimental
comparison groups [1]. Its popularity partly stems from its flex-
ibility and broad applicability: DiD allows for treatment effect
estimation even when there exist no comparison groups that
are exactly comparable to the treatment groups. It instead relies
on the assumption that average differences between treatment
and comparison groups would have been stable over time absent

intervention (a counterfactual “parallel trends assumption”).
Examples of DiD applications in health policy include analyz-
ing the impact of Medicaid expansion [2, 3] and other insur-
ance programs [4-7] on insurance coverage and health, same-sex
marriage on mental health [8, 9], closures of automobile assem-
bly plants on opioid overdoses [10], sweetened beverage taxes
on soda consumption [11], and restrictions on sales of flavored
tobacco products on youth smoking [12].

Growing use of DiD in health policy and medicine represents
an important expansion in observational causal inference in
these fields. Historically, medical researchers relied primarily
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on adjustment for observed confounders (e.g., regression
adjustment, stratification, propensity score weighting, or
matching) and epidemiological designs (e.g., case control
studies) to address selection bias when estimating treatment
effects in non-randomized settings. However, in recent years,
institutions [13] and journals [14] have expressed increased
interest in econometric causal inference methods, including
difference-in-differences, that can adjust for some unobserved
confounders and, in certain cases, allow for rigorous causal
interpretations of results from observational studies. Researchers
have likewise expanded the use of DiD designs, with PubMed
search results for “difference-in-differences” increasing from 2 in
2000 (0.4 per 100 000 PubMed entries) to 23 in 2010 (2.4/100 000)
and 841 in 2024 (48/100000) [15, 16]. Broader DiD adoption has
been accompanied by significant methodological advancements
over the past decade, which have refined the approach but ren-
dered its implementation and interpretation more challenging
[17-21].

In this paper, we synthesize best practices and recent innovations
for medical and health policy researchers. Although previous
reviews have summarized DiD methods for economics audiences
[17-19], we both adapt key points from prior reviews (see in par-
ticular Roth et al. [17]) and develop new material specifically
for a medical audience, extending existing tutorials in the health
literature [1, 22-23]. Compared to researchers in other fields,
those in health policy are diverse in disciplinary backgrounds and
often implement DiD with the objective of guiding time-sensitive
decisions despite limited data. To increase accessibility to audi-
ences from different disciplines, we include both text descriptions
(designed to stand alone) and mathematical notation. We also
explore how DiD has been implemented in this literature and
emphasize opportunities for future applications.

In the following sections, we begin by providing an overview
of DiD assumptions and estimation. We then summarize meth-
ods for: (1) evaluation of DiD’s causal assumptions [20, 24-27],
(2) covariate adjustment and other techniques to relax causal
assumptions [28-32], (3) staggered treatment timing [18, 33-37],
and (4) inference [38-42]. For each, we detail recent advance-
ments that can address common pitfalls in DiD implementa-
tion (Table 1) and describe applications in recent JAMA Network
papers.

2 | DiD Assumptions and Estimation

DiD requires time-series data for treated and comparison units,
with units observed both before and after the start of an inter-
vention. The key identifying assumption in DiD is the “parallel
trends assumption,” which requires that on average, outcomes
for treatment and comparison groups would have had parallel tra-
jectories in the absence of the intervention. DiD also assumes no
anticipation (i.e., no effect in treatment groups prior to the inter-
vention) and no spillovers (e.g., no treatment effect in compari-
son groups) [17, 44]. Combined, these assumptions allow us to
estimate what would have occurred in treatment groups, absent
intervention (Figure 1, dotted lines), and use this to estimate the
average treatment effect on the treated (ATT). In this section, we
define assumptions and estimators traditionally used in DiD and
preview recent advancements.

2.1 | Traditional DiD Assumptions
and Estimation

Traditionally, DiD assumes we have N, treated units and N, com-
parison units, and treatment begins for all treated units at the
same time period 7. Let ¥;,(0) and Y; (1) denote the untreated
and treated potential outcomes of unit i at time period ¢, respec-
tively. Let D, be a binary indicator for the treatment status of unit
i. The causal quantity of interest is the expected population-level
difference between treated and untreated potential outcomes
among treated units post-intervention, that is, the average treat-
ment effect on the treated:

ATT = E[Y, (1) - Y;,(0)|D; = 1,1 > T*]

Note that the untreated potential outcome is unobserved for
treated units. To identify the ATT, we therefore require three
assumptions:

First, Assumption 1 requires that, on average, the untreated
potential outcomes in treatment and comparison groups would
have followed parallel trajectories.

Assumption 1. (Parallel trends):

E[Y,(0)|D; =1, > T*] - E[¥,,(0)|D, = 1,1 < T"|
=E[Y,,(0)|D, = 0,1 > T*| = E[Y, (0)| D; = 0,1 < T*|

Second, the no-anticipation assumption states that the treatment
has no effect on the treated units prior to the intervention.

Assumption 2. (No anticipation):
Y, ()=Y,,0), ie{i:D;=1}1<T*

Third, the Stable Unit Treatment Value Assumption (SUTVA)
requires that the potential outcomes of one unit do not depend on
the treatment status of any other units, which implies no spillover
effects.

Assumption 3. (Stable Unit Treatment Value Assumption
[SUTVA]): For any time #, the potential outcome of unit
i, Y;,(d), does not depend on the treatment status of any
other unit j #i, for d € {0,1} with no hidden levels of
treatment.

Together, no anticipation and SUTVA allow us to link the poten-
tial outcomes to the observed outcomes as follows, which is also
sometimes referred to as consistency [44]:

Y,,=DY,,(1)+ (1 - D,)Y,,(0) 1

itit

Under Assumptions 1-3, we can write the average
post-intervention untreated potential outcomes in the treated
group as:
E[Y, (O|D; = 1,1 > T*|
=E[Y,, (0D, = 1,1 <T*| + E[Y;(0)|D; = 1,1 > T*|
—E[Y,,(0)|D; = 1,1 < T*|
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(a) Treated level jumps immediately after intervention

(b) Treated trajectory changes after intervention

(c) Delayed treated level jump

(1) Stable pre-trend
with no level difference

(2) Stable pre-trend
with a level difference

(3) Changing pre-trend
with no level difference

(4) Changing pre-trend
with a level difference

FIGURE1l | Outcome trajectories. Red and blue solid lines represent the observed outcome trajectories over time in treatment and comparison

groups, respectively. The dotted black line indicates untreated potential outcome in treatment groups under a strong parallel trends assumption. The

shaded area marks the post-intervention period.

=E[Y,(0|D; = 1,1 < T*| + E[Y; ,(0)|D; = 0,1 > T*|
- E[Y;,(0|D, = 0,1 < T*| (Assumption 1)
=E[Y,,()ID; = 1,1 <T*| + E[Y;,(0)| D; = 0,1 > T*|
- E[Y;,(0)|D, = 0,1 < T*| (Assumption 2)
=E[Y,|D, =1t <T*| +E[Y,,|D, = 0,1 > T*|

- [E[Yi’,|D,. =0,t< T*] (Assumption 3, Equation 1)

Therefore, the ATT is identified:

ATT = E[Y,,(1) - Y;,(0)|D; = 1,1 > T*]
=E[Y,|D; =1t >T*| —E[Y,|D, = 1,1 <T*|
- (E[Y,,ID; = 0.1 > T*| —E[Y,,|D, = 0,1 < T*|)

In this expression, the ATT is the difference in average treatment
and comparison outcomes after versus before the intervention.
Although this can be estimated from sample analogs of each
term, in this simple setup, DiD is commonly implemented via
a two-way fixed effects (TWFE) estimator using ordinary least
squares (OLS) regression. Researchers posit the model:

Y, =n+7+6DIt>T") +¢, )
where Y, is the outcome for uniti at time ¢, fori =1, ..., N (the
total number of units) and ¢ = 1, ..., T (the total number of time
periods). #; is the fixed-effect for each unit i, 7, is the fixed-effect
for each time period ¢, and ¢;, is the idiosyncratic error for unit

i at time 7. We do not specify an intercept term, assuming this is
absorbed in the fixed effect terms. Here, § corresponds to the ATT
under the previous three assumptions, and the TWFE estimator
5 can be obtained through OLS corresponding to Equation (2).
Importantly, the terms “DiD” and “TWFE” are not interchange-
able; the TWFE estimator is only used in a subset of DiD analy-
ses. Last, we note that the following specification, which includes
binary indicators for treatment and post-intervention timing sta-
tuses rather than unit and time fixed effects, provides the same
ATT (3) when estimated with OLS:

Y, =D+ plt >T*)+ 6Dt >T") + ¢,

2.2 | Alternative Assumptions and Saturated
Estimators

The conditions under which the DiD estimator derived above
is valid are well-established in the literature. In practice, how-
ever, researchers often seek to analyze more complex setups.
For example, several authors have developed estimators for cases
when treatment started at different calendar times for different
units (“staggered adoption”) [34, 35, 45-48]. Many new spec-
ifications are “saturated,” estimating an ATT specific to each
post-intervention time period and sometimes to specific units or
groups of units. These techniques rely on different versions of
the parallel trends assumption, requiring parallel trends across
specific time periods and units, rather than over the average
of time periods and units as in Assumption 1. For example,
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Assumption 4 requires parallel trends over all time periods and
adoption cohorts [35], where adoption cohorts are defined as the
set of units that initiated treatment at the same calendar time.

Assumption 4. (Strong parallel trends): For every adoption
cohort E; = e # ¢’ thatinitiated treatment at time e and every pair
of time periods ¢ # s [34]:

E[Y,,(0) - ¥,,(0)|E, = ¢] = E[Y,,(0) - ¥, (0| E, = ]

It is likewise possible to assume parallel trends relative to specific
pre-intervention time periods (e.g., the last pre-intervention
period) [34].

With saturated specifications, researchers can estimate a set of
treatment effects that can be aggregated into one overall ATT
of interest through user-specified weights [34]. For example, we
may estimate the following saturated specification:

T
Y, =n+r+ ) Do E =e)lt=))+e,

ec& j=e

In this specification, estimate 33’]. represents the treatment
effect at post-intervention time period j in cohort e, that is,
E[Y;;(1) - Y, (0)| E; = e|, under Assumption 4.

Saturated models, which will be discussed further throughout the
text, both prevent several problems that can arise when incor-
porating staggered treatment timing and time-varying covari-
ates and allow researchers to more intentionally aggregate ATTs
across different groups. We will therefore argue that saturated
specifications are a useful default.

3 | Literature Review

To explore DiD in the recent medical literature, we surveyed
DiD analyses published in three Journal of American Medical
Association (JAMA) network journals between January 2022 and
November 2024: JAMA (n=13, 31%), JAMA Internal Medicine
(n=16, 38%), and JAMA Pediatrics (n =13, 31%) (see Supporting
Information for search criteria). These papers evaluated a range
of policies, with interventions related to Medicare or Medicaid as
the most popular (n =10, 24%) [49-58]. Other policies included
private equity acquisition of hospitals [59, 60], cigarette menthol
flavor bans [61, 62], and anti-discrimination legislation [63, 64].
Broadly, these DiDs leveraged the fact that many US health care
policies—such as phased insurance expansion [58], elimination
of asset tests [65], and antibullying policies [64]—were intro-
duced at the state- or local-level, leaving comparable states or
localities untreated. In the following sections, we explore how
these papers integrated best practices.

4 | Evaluating Causal Assumptions

41 | Recommendation la: Provide
Context-Specific Theory When Justifying Causal
Assumptions

DiD relies on assumptions— parallel trends, no anticipation, and
SUTVA —that are not directly testable because we cannot observe

what would have happened absent intervention. The parallel
trends assumption has been a particular focus of methodological
inquiry. It invites the question of why we believe, prior to see-
ing the data, that outcomes in treatment and comparison groups
would have had similar counterfactual trends, even if their lev-
els differed [20]. Recent work has emphasized that researchers
should draw on context-specific theory to provide evidence as to
why treatment and comparison groups would have been expected
to trend in parallel in the absence of an intervention [20, 27], ide-
ally prior to seeing outcome data [17]. This might involve, for
instance, highlighting similar exposure to market shocks or sim-
ilar policy environments across treatment and comparison units.

Where formal theory is well-developed, researchers may be able
to translate the parallel trends assumption into domain-specific
conditions and use context to help select functional form or scale
of the outcome, to which the parallel trends assumption is usu-
ally sensitive [17, 32, 66]. For example, if the parallel trends
assumption holds in the outcome variable’s original levels, it will
generally not hold in log-transformed levels (for other transfor-
mations, see [67, 68]), unless there was randomization of treat-
ment and/or no differential time trends [32]. Recent work has
described epidemiological conditions required for parallel trends
to hold with infectious disease outcomes under different outcome
transformations and specifications, and proposed estimators for
this purpose [27, 69]. Other work has adapted the parallel trends
assumption to a survival analysis with time-to-event data, formal-
izing a version of parallel trends on hazard rates [70, 71].

Last, domain knowledge may help to inform potential viola-
tions of spillover and no-anticipation assumptions. For example,
if individuals can easily avoid a soft drink tax by shopping in
a neighboring jurisdiction, researchers might want to remove
these jurisdictions from the set of comparison groups [72]. Sim-
ilarly, if a policy is announced or enacted in legislation for an
extended period prior to implementation, researchers may end
the pre-intervention period prior to the time at which individuals
likely anticipated its adoption [73-75].

4.2 | Recommendation 1b: Explore and Explain
the Observed Level Differences, Trend
Trajectories, and Effect Timing

Researchers often use pre-intervention data to help support the
plausibility of causal assumptions, especially parallel trends.
In theory, assumptions can be satisfied with or without a
level difference between treatment and comparison groups,
and with or without stable pre-intervention trends (rows of
Figure 1). Likewise, there can be different post-intervention
patterns in treatment effects, including: (a) level changes imme-
diately post-intervention, (b) trajectory changes immediately
post-intervention, or (c) delayed level or trajectory changes
(columns of Figure 1). However, DiD designs are often thought
to be most compelling when level differences between groups
are small before the intervention [20], and there is a sizable
change in the treated outcome shortly after the intervention
(e.g., Figure 1, column a).

When there are increasing treatment effects (e.g., Figure 1,
column b) as an intervention is phased in, researchers
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might investigate whether these suggest continuation of a
pre-intervention trend or are driven by other post-intervention
policies or changes. When treatment effects are delayed (e.g.,
Figure 1, column c), researchers should explore contextual evi-
dence to support the plausibility of the observed effect timing
(e.g., time needed for a drug to become effective) and again assess
whether other contemporaneous events may have produced the
observed effect. When there is instability in pre-intervention
trends (e.g., Figure 1, rows 3 and 4), such as that induced by
the COVID-19 pandemic in many outcomes, researchers may
need to account for the sensitivity of results to the length of
pre-intervention periods, the set of appropriate comparison
units, and whether these may suggest anticipation effects. They
should also consider whether changes in the comparison group
post-intervention may suggest spillover effects.

43 | Recommendation 1c: Use Non-Inferiority
Tests and Event Study Plots to Diagnose Violations
of Causal Assumptions

Researchers frequently employ statistical tests to evaluate evi-
dence in favor of parallel pre-intervention trends. Traditionally,
pre-trend tests have been based on a null hypothesis that there
was no violation of parallel trends during pre-intervention peri-
ods, e.g., no pre-intervention slope difference. However, as sev-
eral papers have noted [20, 24, 76-77], these tests can be mis-
leading because they may not have adequate statistical power to
detect a violation, even if there are non-parallel pre-intervention
trend differences between treatment and comparison groups
[20, 24, 76-77].

One alternative is to consider non-inferiority tests [24, 78], which
specify a null hypothesis that the violation of parallel trends
exceeds some threshold (instead of no violation) and proceed
with DiD only if there is sufficient evidence to reject the null
[17, 24]. A related approach is to report an estimate of the power
of pre-trends tests against what the researcher believes to be
meaningful violations of parallel trends [76]. However, conduct-
ing statistical pre-trend tests and conditioning the analysis on
passing these tests may exacerbate bias in the estimated treat-
ment effects because the observed draws of data that pass such
tests are a select sample from the true underlying data-generating
process [76].

Event study plots (e.g., Figure 2) provide another useful diag-
nostic for evaluating pre-intervention trends. These show esti-
mated “treatment effects” at each time point, comparing the
change in treatment and comparison groups relative to a ref-
erence period (e.g., the last pre-intervention time period). The
pre-intervention effects can be interpreted as placebo effects that
should be small in magnitude with narrow confidence intervals,
without evidence of trends or anticipation effects. With a com-
mon intervention time for all units, an event study design can be
specified:

Yi,tzni+Tl+ Z éjDiﬂ(tzj)'i-ei,t (3)
J#ET* -1

We encourage the use of event studies to visually assess
pre-intervention trends between treatment and comparison

groups, explore timing and trends in post-intervention treatment
effects, and examine bounds of confidence intervals to rule
out unlikely pre-intervention trend patterns. As with tests of
slope differences, event study estimates should not be eval-
uated based on whether confidence intervals overlap zero
[24, 76]. Further, when treatment adoption is staggered, the
interpretation of event study plots depends on the specifica-
tion [79], and pre-intervention points may not display secu-
lar trends unless they are all constructed relative to the same
pre-intervention period (i.e., base period = “universal” in R or
long2 in Stata).

In summary, because causal assumptions are not directly testable,
researchers should justify why they expect that treatment and
comparison groups would have had parallel trends absent inter-
vention even if pre-intervention levels differ. Context-specific
theory may inform the plausibility of causal assumptions.
Researchers may also report results from non-inferiority tests
and present event study plots to visualize any pre-existing trends
and the pattern of post-intervention evolution in the treated
outcomes.

4.4 | Literature Review

Most studies provided little contextual support for causal assump-
tions or the observed patterns of treatment effects. However,
some discussed this; for example, one paper argued that a delay
in the impact of admitting COVID-19 patients to skilled nursing
facilities on cases and deaths was to be expected, especially for
the latter, due to the time needed for transmission and the length
of the disease course [43].

Two-thirds of the articles we reviewed (n =28, 67%) implemented
traditional pre-trend tests, with a null of no violation of paral-
lel trends. None discussed non-inferiority tests or calculated test
power based on pre-intervention data.

Close to half (n =18, 43%) of the studies reported an event study
plot. These graphs showed different treatment effect patterns.
Many papers [54, 64, 80-83] showed an immediate and persis-
tent jump in outcome levels after the intervention. Others [10,
65] found no immediate level changes but increasing treatment
effects over time and/or after a period of treatment adoption, sim-
ilar to columns (b) and (c) in Figure 2. For instance, one study
found an increasing treatment effect of the safer supply policy in
opioid prescription over time [84].

5 | Covariate Adjustment and Relaxing Causal
Assumptions

In some applications, DiD’s causal assumptions can seem
implausible, and researchers may seek to adapt DiD to address
potential confounding. In this section, we discuss approaches for
relaxing causal assumptions. We first describe how researchers
may posit parallel trends only conditional on covariates and
adjust estimation accordingly [85-89]. We then describe meth-
ods that derive bounds on bias induced by violations of parallel
trends and/or other causal assumptions [90-92].
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(a) Treated level jumps immediately after intervention (b) Treated trajectory changes after intervention (c) Delayed treated level jump
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FIGURE2 | Event study plots under different scenarios. The event study plot in each panel corresponds to the outcome trajectories of the cor-

responding panel in Figure 1. The dotted horizontal line represents 0, that is, no treatment effect. The vertical error bars represent 95% confidence
intervals. Treatment effect estimates were generated according to Equation (3).

51 | Recommendation 2a: Understand What
Is—And Is Not— A Confounder in DiD

In many observational epidemiology studies, researchers
evaluate the relationship between an outcome and a treat-
ment of interest, adjusting for covariates. For example, they
may estimate a regression corresponding to the following
model:

Y, = 6D, +BX, +¢

where § is the treatment effect of interest, # is a row vector of
coefficients, and X, is a column vector of observed covariates for
unit /. In this case, any variable that affects both treatment status
and the outcome can be a confounder, and failing to adjust for it
may bias treatment effect estimates.

By contrast, in DiD, covariates that only produce time-invariant
level differences between treatment and comparison outcomes
are not confounders [89], and excluding them does not bias
ATT estimates (Table 2, row 1). However, covariates that drive
differential trends may confound treatment effect estimates. We
argue that researchers should focus on adjusting for confounders
measured pre-intervention for which they believe a “condi-
tional parallel trends assumption” (Assumption 5) holds. This
implies parallel trends within populations in covariate-defined
strata (e.g., parallel trends within smokers and non-smokers):
[17, 34]

Assumption 5. (Conditional parallel trends): For 7, < T*,
t, > T*, and a vector of covariates X,

E[Y,,,0) = Y, @ID, =1.X,| = E[Y,,,©) - ¥,, ©ID, =0,X]

This translates to two scenarios that merit adjustment. First, sup-
pose researchers have cross-sectional data, meaning that different
individuals are sampled at each observed time point. In this case,
researchers may need to account for covariates that shift an out-
come’s level, even if they do not affect an individual’s trajectory
(Table 2, row 2, Case 1) because changing composition may drive
differential trends. Second, in either cross-sectional or longitu-
dinal/panel data (in which the same individuals are sampled at
each time point), researchers may adjust for covariates that shift
the outcome trend (Table 2, row 3, Case 2).

We urge caution when adjusting for confounders that themselves
vary over time (e.g., blood pressure) for two reasons (Table 2, row
4) [93]. First, this invites a risk of adjusting for variables on the
causal pathway if the confounder can itself be affected by treat-
ment. Second, conditioning the parallel trends assumption on a
time-varying variable makes it difficult to conceptualize a cohe-
sive notion of underlying parallel trends—if trends are only par-
allel conditional on a time-varying variable, they may not be, in
fact, believed to be parallel in any well-defined subgroup. As a
result, in this case, other study designs may be more appropriate
than DiD.
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5.2 | Recommendation 2b: Be Cautious When
Adding Covariates Directly Into Regression
Specifications

Mirroring methods used in other observational studies, many
DiD studies add covariates directly into the TWFE specifica-
tion (Equation 2) to adjust for confounders [17, 89]. However,
this approach may not be appropriate. In Case 1 (cross-sectional
data, covariates affect outcome’s level), although this will reduce
bias, adding time-varying covariates into TWFE, rather than
a saturated specification, will fit covariate coefficients in part
based on time heterogeneity in treatment effects [24, 94]. There-
fore, if adding covariates directly into a regression specification,
researchers should adopt a saturated model, estimating effects at
each time period (Table 2, row 2):

Y, =n+7,+ Y 6Dt =j)+pX, +e,
=T

In Case 2 (cross-sectional or longitudinal data, covariates affect
outcome’s trajectory), bias may persist after adding covariates to a
TWFEFE specification both because of the above issue and because
naively adding covariates typically does not allow trends to differ
by covariate value (Table 2, row 3). To address this, one approach
could involve adding a group-covariate interaction to a saturated
model encoding some time-varying functional form: [45]

Y, =41+ Z 8§Dt = j)+ BX,,D; +e,
>

For example, allowing for differential linear time trends would
correspond to setting X, , = 1X,.

5.3 | Recommendation 2c: Apply Adjustment
Techniques That Allow Parallel Trends
Conditional on Covariates

Several other techniques have been proposed to allow for unbi-
ased or consistent treatment effect estimation assuming condi-
tional parallel trends (Assumption 5) with potentially fewer para-
metric assumptions. These fall into two main categories, which
we denote trajectory modeling [28, 29, 86, 88, 95] and propensity
score weighting [17, 30].

Techniques in the first category involve modeling subgroup-
or covariate-specific trends, using these to estimate subgroup
effects, and combining them into an ATT [28, 29, 86, 89]. To
do this, researchers would model the evolution in untreated
outcomes from pre- to post-intervention in the comparison
group, conditional on covariates, and use this fitted model
to project untreated outcome evolution in the treated group.
That is, we first fit a conditional expectation function (e.g.,
@[YL,2 —Y,, |D; =0, X,] [17], assuming longitudinal data) using
only data from the comparison group, and evaluate it given
covariate distribution among treated units. We can then use this
to generate an overall ATT estimate: [17, 28]

— 1
ATTtrajectory =N Z [(Yi,t2 - Yi,tl)

Trajectory modeling produces consistent estimates if
covariate-specific conditional expectation functions are cor-
rectly specified. Matching is a special form of such trajectory
modeling, in which researchers define subgroup-specific trajec-
tories based only on comparison units with similar (or identical)
baseline characteristics and compare these to their treated
counterparts (i.e., DiD on a “matched” subsample of data)
[86, 88, 95].

Alternatively, researchers can employ inverse probability weight-
ing (IPW) to recover the ATT assuming conditional parallel
trends. This involves fitting a propensity score model, ﬁ( X; ), that
predicts treatment status from covariates and using the estimated
propensity scores to define weights that account for selection into
treatment [17, 30]. With longitudinal data, the ATT is then iden-
tified by weighting each unit’s observed outcome change using its
propensity scores: [30]

£[(p, - G225 ) (v, - v,,)]

i

This approach provides a consistent estimator for the ATT if the
propensity score model is correctly specified.

Doubly robust (DR) estimators combine trajectory modeling and
propensity score estimation and produce consistent estimates if
either the trajectory model or the propensity score model is cor-
rectly specified: [29]

(1-D)p(X,)
ATT,, < E|| 2 %) (Y, =Y,)
B | G EOICIT]
1-p(X,)

_lE[Yi,tz - Yi,r1 |Di =0, Xi])

Other innovations in confounding adjustment methods include
Bayesian approaches for trajectory modeling [96, 97], machine
learning to estimate weights for IPW and doubly robust estima-
tors [98-100], and IPW approaches driven by latent variables or
marginal structure models to facilitate a better understanding
of selection into treatment [100-102]. Under different assump-
tions, these techniques may allow for treatment effect estimation
assuming conditional parallel trends.

5.4 | Recommendation 2d: Consider Estimators
That Bound the Impact of Causal Assumption
Violations

Beyond methods that directly model potential confounders,
researchers may use sensitivity analyses to quantify how sensitive
substantive conclusions are to violations of causal assumptions.
As above, most work in this area has focused on sensitivity anal-
yses for parallel trends: for example, Rambachan and Roth [91]
proposed an approach to bound how large violations of parallel
trends must be to meaningfully shift effect estimates and devel-
oped methods to construct valid confidence intervals for the treat-
ment effect under certain violations. Keele et al. [103] likewise
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developed a sensitivity analysis method based on matching to
assess how strong unobserved confounders must be to alter or
reverse their conclusions. Ye et al. [92] proposed bounding bias by
choosing two comparison groups with offsetting biases, assum-
ing that the treated group’s counterfactual path would have been
sandwiched or “bracketed” between those of the chosen com-
parison groups. DiD estimates based on these two groups then
provide lower and upper bounds on the treatment effect. These
approaches allow researchers to evaluate and communicate the
robustness of conclusions across reasonable assumptions even
lacking data on potential confounders (see examples [104, 105]).

Sensitivity analyses can also be helpful when researchers suspect
violations of the no anticipation assumption. Although the com-
mon practice is to end the pre-intervention period early before
any impact of anticipation effects could happen [75], researchers
may consider methods proposed by Chen et al. [73] to bound vio-
lation impact under different assumptions about the magnitude
of anticipation effects.

In summary, when faced with violations of parallel trends,
researchers might carefully consider potential confounders and
use trajectory modeling, propensity score weighting, or combined
doubly robust estimators to account for them (Table 2, rows 2 and
3). Sensitivity analyses like bounding can be helpful to quantify
the robustness of substantive conclusions when causal assump-
tions are violated.

5.5 | Literature Review

Among papers we reviewed, most (34 of 42, 81%) adjusted for
covariates in their analyses, with 27 (79%) directly adding the
covariates into regression specifications. Among them, nine stud-
ies (33%) employed a saturated model. Five studies (15%) con-
ducted matching or weighting based on the covariates, and
two used a doubly robust estimator. None of the papers used a
bounding method to explore the impact of parallel trends vio-
lations. Twenty-eight out of these 34 studies that adjusted for
covariates (82%) included only baseline covariates in their model
specifications, while the other six (18%) adjusted for both baseline
and time-varying covariates.

6 | DiD With Staggered Treatment Timing

Researchers frequently apply DiD to settings in which units initi-
ate treatment at different calendar times. In this case, conducting
DiD with a static TWFE specification (Equation 2) can lead to
abiased ATT estimate unless treatment effects are homogeneous
both over time and across all treatment adoption cohorts (Table 3,
row 1) [17]. This occurs because the treatment effect estimate pro-
duced by TWFE is a weighted average of possible 2 x 2 compar-
isons over all groups and treatment times, including using early
treated units as comparison units after treatment [36]. When the
treatment effect is changing over time, this can even flip the sign
of the treatment effect [17, 34, 36]. Furthermore, these 2 X 2 com-
parisons are combined into a treatment effect estimate based on
weights designed to minimize variance. When treatment effects
differ across adoption cohorts, this treatment effect estimand may
no longer reflect the ATT of interest.

6.1 | Recommendation 3: When Treatment
Adoption Is Staggered, Use Saturated Estimators
With Clean Comparison Groups, Particularly
Those That Estimate Group-Time Effects

Many saturated models have been developed to address issues
related to staggered treatment adoption [34, 35, 45-48]. These
models can invoke different versions of the parallel trends
assumption, and researchers often need to specify the time peri-
ods and units over which the parallel trends assumption is
believed to hold. In this section, we summarize three common
techniques, in the order of increasing flexibility: dynamic TWFE,
stacked DiD, and group-time estimators, and describe the condi-
tions under which each of them performs well.

6.1.1 | Dynamic TWFE

One simple extension to the static TWFE specification
(Equation 2) is the dynamic TWFE specification, which par-
tially addresses these problems. In dynamic TWFE, the single
treatment status indicator is replaced by multiple indicators, esti-
mating a treatment effect for each post-intervention time period
relative to treatment initiation, where time since treatment for
unit / and time 7 is denoted R;, =1 — E;:

Y‘.J =+ + Zé,Diﬂ(R,»,, = ") + €y

r>0

The dynamic TWFE specification yields a sensible estimand for
the ATT if heterogeneity only exists in the number of time peri-
ods since treatment, but it still requires the sequence of treatment
effects to be the same across all cohorts regardless of calendar
adoption time (Table 3, row 2) [35, 46]. For example, dynamic
TWEFE allows treatment effects to be different in year 2 compared
to year 3 following treatment adoption, but the year 2 effect is
assumed to be the same across all adoption cohorts [17]. This may
not be plausible if early adopters had a different experience of the
policy (e.g., a pilot phase) or if there was selection into treatment.

6.1.2 | Stacked DiD

Nevertheless, there are other methods that allow for treatment
effect heterogeneity both across cohorts and over time. For
example, in stacked regression, researchers can create a new
dataset by stacking each treated cohort with the group of compar-
ison units that were not yet treated over a pre-selected time hori-
zon (e.g., four time periods before and two time periods after the
treated group received the treatment) [48]. This approach allows
both time and cohort heterogeneity, requiring parallel trends over
only the horizon of time that the researcher specifies. The overall
ATT is implicitly a weighted average of treatment effects in each
cohort, with weights reflecing the variance of each cohort-specific
treatment effect [47].

6.1.3 | Group-Time Estimators

For further flexibility, researchers may generate a treatment effect
estimate for each cohort at each post-intervention time (often
called a “cohort-time” or “group-time” treatment effect [34, 35,
45]) and aggregate as desired. There is growing consensus that
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researchers should default to these saturated models, including
estimators proposed by Callaway and Sant’Anna, Sun and
Abraham, and Borusyak, Jaravel, and Spiess (Table 3, row 3)
[34, 35, 46, 106].

To estimate a group-time average treatment effect
ATT(e,1) = E[Y,,(1) - Y;,(0)| E; = ¢]

Callaway and Sant’Anna [34] proposed to estimate a treatment
effect for each cohort e at each post-intervention time period
¢ using only the subset of data containing time periods ¢ and
e — 1 for units in adoption cohort e and those never-treated (or
not-yet-treated at 7):

Y, =n+71,+6,(E =e)+e¢,

They then described several approaches to aggregate individual
group-time average treatment effects into an overall ATT estimate
[34, 106].

Other group-time estimators differ in the choice of compari-
son groups and pre-intervention time periods [17, 107-108].
The Callaway and Sant’Anna [34] estimator uses only the last
pre-treatment period for reference, which invokes a weaker ver-
sion of the parallel trends assumption (i.e., assuming that coun-
terfactual trends would have been parallel between the last
pre-intervention and the post-intervention periods) but may have
correspondingly lower power [108] than estimators that use all
pre-intervention periods as reference (e.g., [46]). In practice, soft-
ware to implement these estimators also often allows for user cus-
tomization. For example, the Sun and Abraham [35] estimator,
motivated by strong parallel trends (Assumption 4), can be imple-
mented with software (R fixest) that allows users to pick one or
multiple reference periods and either never-treated or last-treated
units as the comparison group [109].

Saturated group-time estimators provide researchers with the
flexibility to aggregate treatment effects meaningfully into an
overall ATT, as specified by the user, for example, larger weights
in the first few post-treatment periods if the aim is to evaluate the
short-term effect of an intervention. Overall, these alternatives
provide well-defined causal parameters with transparent weights
over the 2 X 2 comparisons and avoid using treated units as com-
parison groups [17]. In a large empirical reanalysis [21], estima-
tors that account for staggered treatment timing were found to
sometimes produce substantially smaller treatment effect esti-
mates. These estimators also often produced larger standard
errors and would require more power to reject the null hypothesis
than TWFE [21].

6.2 | Literature Review

In our literature review, 20 (48%) of the 42 studies had a stag-
gered treatment design; however, about half of them (n=9, 45%)
used a static TWFE model as the main estimator. One study did
not clearly specify its estimator. Of the remaining studies that
implemented estimators accounting for the staggered treatment
(n=10, 50% of all studies with staggered treatment), Callaway
and Sant’Anna (n =3, 30%) and stacked DiD (n=3, 30%) were

the most popular methods. The remaining adjustment methods
included dynamic TWFE (n=2), two-stage DiD proposed by
Gardner [47] (n =1), and the d’Chaisemartin and D’Haultfoeuille
estimator [33] (n=1).

7 | DiD With Robust Inference

7.1 | Recommendation 4: Where Assumptions
for Normal-Based Clustered Standard Errors May
Not Be Met, Consider Alternative Inference

Methods, Particularly the Wild Cluster Bootstrap

In DiD studies, treatment generally occurs at an aggregate level
(e.g., state), but data may be collected either at the same aggre-
gated or a more granular level. For example, we may have
patient-level data, while the intervention was implemented at
the hospital level, or we may have county-level data while the
policy was implemented by state. In all scenarios, it is recom-
mended to estimate the standard errors clustered at the level of
treatment assignment [17,110-111]. When treatment is assigned
at an aggregate level, analyzing individual-level data is unlikely
to substantially increase power.

Table 4 summarizes inference methods for DiD studies.
Normal-based clustered robust inference (e.g., cluster robust
in Stata) is one of the most popular methods for clustering stan-
dard errors. While normal-based inference accounts for error
correlation within clusters, it requires a substantial number of
both treated and untreated clusters (e.g., at least 25 or 30 clusters
in each class), which may not exist in many DiD applications
(Table 4, row 1) [17, 114]. If there are only a few clusters in
the data, normal-based clustered standard errors are typically
anti-conservative [114, 115], leading to inappropriately small p
values and an inflated Type I error rate.

Several alternative methods have been proposed to conduct infer-
ence with a small number of clusters. One popular approach is
the wild cluster bootstrap (or wild score bootstrap for generalized
linear models) [41]. In each bootstrap replicate of these meth-
ods, we multiply the estimated residuals (or scores) in each clus-
ter by a draw of an independent random variable with mean 0
and variance 1 [39, 116]. Simulations suggest that these meth-
ods can perform well with about five clusters, although estimates
may be conservative when the proportion of treated units is small
(Table 4, row 2) [39, 114, 116]. However, despite strong simula-
tion performance, the wild cluster bootstrap technically invokes
an assumption of a balanced proportion of treated units among
clusters, which may not be plausible in many DiD applications
where the treatment is assigned at the cluster level (see Canay
etal. [117]).

Other methods rely on different assumptions (Table 4, rows 3
and 4) [115]. Conley and Taber proposed an approach to esti-
mate the distribution of errors in the treated clusters using that
from the untreated clusters [40]. This approach may be powerful
when there are only a few treated clusters but many untreated
ones from which to estimate the error distribution. However, it
requires that errors in the treated units have the same distri-
bution as those in the untreated units, which may be violated
under treatment effect heterogeneity. Alternatively, conformal
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inference can perform well when there are many time periods
available. However, it assumes that the proportion of treated units
in each cluster to vary little over time and imposes a strong par-
allel trends assumption over all pre- and post-treatment periods
[42].

Taken together, researchers should cluster standard errors at the
level of treatment assignment and be wary of normal-based clus-
ter inference if there are insufficient numbers of treatment or
comparison clusters and apply alternatives.

7.2 | Literature Review

Among papers reviewed, normal-based standard errors were by
far the most common method (n =40, 95%) for conducting infer-
ence. Two papers implemented bootstrap algorithms for infer-
ence, one with traditional bootstrap [118] and another one with
wild cluster bootstrap [119]. 48% of studies (n=20) clustered
standard errors at the level of treatment assignment. Among
them, 30% (n=6) had either large numbers of clusters or used
methods that account for a small number of treatment and/or
comparison clusters. Five papers (12%) studied an intervention
that was assigned at an individual patient or physician level.

8 | Conclusion

DiD is one of the most popular observational causal inference
tools in health policy and medical research. It can allow for rigor-
ous causal interpretations in certain observational studies. When
an intervention is introduced first in a few cities or states, DiD
can support evaluation and learning from early adopters before
scaling to additional locations.

This paper identifies the key challenges in DiD studies and
compiles recommendations that have been proposed in recent
literature to support analyses of US health care policies. We
argue that researchers should start by evaluating causal assump-
tions based on context, visualizing data in plots, using statisti-
cal tools with adequate power, and selecting an outcome func-
tional form guided by domain-specific knowledge. They can also
relax assumptions, for example by assuming parallel trends only
in subgroups of the data or conditional on covariates. When
treated units initiate treatment at different times, we recommend
that researchers default to group-time treatment effect estimation
methods that perform well with heterogeneous treatment effects
across time and cohorts. Finally, normal-based clustered infer-
ence requires both many treated and many untreated clusters.
When this is not the case, researchers should opt for alternatives
that require weaker assumptions.

Overall, we are optimistic that these recent innovations can
strengthen DiD practice and associated policy recommendations.
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SUPPLEMENTARY MATERIAL
A LITERATURE REVIEW

We first searched for the term “difference-in-differences” in title or abstract fields on PubMed, which returned a total of 7 articles published in JAMA, 10 in
JAMA Pediatrics, 15 in JAMA Internal Medicine. We then searched for “difference-in-differences site:jamanetwork.com” anywhere in the article on Google
Scholar and identified another 7 relevant articles from JAMA, 4 from JAMA Internal Medicine, and 4 from JAMA Pediatrics. We reviewed the abstract of all

identified publications from these three journals. We excluded 2 commentary articles and 3 studies in which DiD was not used in their main analyses.
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