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IMPORTANCE In addition to illness, the COVID-19 pandemic has led to historic educational
disruptions. In March 2021, the federal government allocated $10 billion for COVID-19 testing
in US schools.

OBJECTIVE Costs and benefits of COVID-19 testing strategies were evaluated in the context
of full-time, in-person kindergarten through eighth grade (K-8) education at different
community incidence levels.

DESIGN, SETTING, AND PARTICIPANTS An updated version of a previously published
agent-based network model was used to simulate transmission in elementary and middle
school communities in the United States. Assuming dominance of the delta SARS-CoV-2
variant, the model simulated an elementary school (638 students in grades K-5, 60 staff)
and middle school (460 students grades 6-8, 51 staff).

EXPOSURES Multiple strategies for testing students and faculty/staff, including expanded
diagnostic testing (test to stay) designed to avoid symptom-based isolation and contact
quarantine, screening (routinely testing asymptomatic individuals to identify infections and
contain transmission), and surveillance (testing a random sample of students to identify
undetected transmission and trigger additional investigation or interventions).

MAIN OUTCOMES AND MEASURES Projections included 30-day cumulative incidence of
SARS-CoV-2 infection, proportion of cases detected, proportion of planned and unplanned
days out of school, cost of testing programs, and childcare costs associated with different
strategies. For screening policies, the cost per SARS-CoV-2 infection averted in students and
staff was estimated, and for surveillance, the probability of correctly or falsely triggering an
outbreak response was estimated at different incidence and attack rates.

RESULTS Compared with quarantine policies, test-to-stay policies are associated with similar
model-projected transmission, with a mean of less than 0.25 student days per month of
quarantine or isolation. Weekly universal screening is associated with approximately 50% less
in-school transmission at one-seventh to one-half the societal cost of hybrid or remote
schooling. The cost per infection averted in students and staff by weekly screening is lowest
for schools with less vaccination, fewer other mitigation measures, and higher levels of
community transmission. In settings where local student incidence is unknown or rapidly
changing, surveillance testing may detect moderate to large in-school outbreaks with fewer
resources compared with schoolwide screening.

CONCLUSIONS AND RELEVANCE In this modeling study of a simulated population of primary

school students and simulated transmission of COVID-19, test-to-stay policies and/or

screening tests facilitated consistent in-person school attendance with low transmission risk

across a range of community incidence. Surveillance was a useful reduced-cost option for

detecting outbreaks and identifying school environments that would benefit from increased

mitigation. Author Affiliations: Author
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n kindergarten through 12th grade education, COVID-19

has posed risks to student, teacher, and family health;

school operations; and local communities. As of
May 2021, about a third of US students were not offered the
option of full-time in-person attendance,! and virtual
and hybrid models imposed substantial burdens during
the 2020-2021 school year.?® Districts are seeking to main-
tain safe in-person education for the 2021-2022 school
year, despite high transmissibility of newer variants, re-
cord hospitalizations among children during the latter half
of 2021,° and the potential for seasonal increases in
transmission.'°1*

Frequent, widespread SARS-CoV-2 testing is now a viable
option,'*!> and the federal government has allocated $10
billion for diagnostic and screening tests in US schools.'® A key
question is how to best allocate this funding to maximize in-
person educational time while both controlling COVID-19
transmission and managing financial and operational costs.
Centers for Disease Control and Prevention (CDC) guidelines
for school reopening divide testing into 3 categories.!” Diag-
nostic testing targets individuals showing symptoms of
COVID-19 as well as close contacts of someone with diag-
nosed infection. Screening entails routine asymptomatic test-
ing of the full school population to identify active cases and
prevent onward transmission. By contrast, surveillance test-
ing involves sampling a fraction of the population to identify
potential outbreaks and trigger a public health response
(eg, schoolwide screening or classroom closures). Schools
require guidance on how to best allocate resources toward
different testing objectives.

Previous modeling analyses have projected transmission-
related outcomes associated with school attendance under a
variety of mitigation measures but did not compare different
testing strategies or explore their monetary or operational
costs.!®2! In this article, we address several questions regard-
ing the role of testing in educational settings: first, to what
extent can different testing strategies limit school-associated
transmission of SARS-CoV-2 while sustaining in-person learn-
ing? How frequent are quarantines arising from different
strategies, and to what extent can testing of contacts avert days
out of school? How do testing costs compare with the finan-
cial costs associated with school absences or closures? How
might these outcomes vary depending on local transmission
risk? We focus on elementary and middle schools because of
higher childcare costs and later vaccine rollout for these
groups.?? We use an agent-based simulation of COVID-19
transmission to compare outcomes associated with different
testing strategies, with a particular focus on infections, in-
person educational days, and costs.

Methods

This study was deemed not human subjects research by the
Mass General Brigham institutional review board
(2021P002876). Reporting conforms to the Consolidated
Health Economic Evaluation Reporting Standards (CHEERS)
guidance.?®
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Key Points

Question What are the costs and benefits of COVID-19 testingin
primary schools (students in kindergarten through eighth grade)?

Findings In this decision analytic model of COVID-19 transmission
in simulated US elementary and middle schools, test-to-stay
strategies were associated with reduced quarantine time but
minimal increases in transmission across all levels of community
incidence. Compared with no testing, weekly screening was
associated with substantial reductions to in-school transmission
when community incidence was high and had lower societal cost
than remote instruction, while an adaptive surveillance strategy
offered a more efficient option to detect outbreaks when local
incidence was lower or poorly characterized.

Meaning With federal funding available, schools should use
COVID-19 testing to facilitate in-person education, adapting their
testing strategy to changes in local COVID-19 risk.

We used a previously validated agent-based simulation
model (ie, a model that explicitly simulates individuals and
their interactions) to estimate the effects of different testing
strategies in elementary and middle schools in the United States
(eMethods and eFigure 1 in the Supplement).!® When indi-
viduals interacted with an agent (ie, person) infected with
SARS-CoV-2, transmission risk was proportional to duration
and intensity of exposure. In schools, individuals had sus-
tained daily contact with a classroom cohort as well as addi-
tional interactions with other members of the school commu-
nity. Outside of schools, in addition to an exogenous
community infection risk, individuals interacted with house-
hold members, and each day that students did not attend
school, families mixed with another randomly chosen family
to reflect learning pods or social interactions.

The model drew stochastic outcomes assuming an aver-
age latent period of 3 days before the onset of infectiousness,
2 days of presymptomatic transmission if symptoms
develop,?*2° total infectious time of 5 days,?°2° and overdis-
persion of infectivity in adolescents and adults?®-° (eTable 1
in the Supplement). We assumed that adults and adolescents
with fully asymptomatic disease transmit COVID-19 at half
the rate of those with any symptoms.3! In the absence of vac-
cination, children younger than 10 years were half as suscep-
tible and half as infectious as symptomatic adolescents and
adults.>236

We modeled circulation of the delta variant, assuming
twice the transmissibility of wild-type virus,?”-*® and, except
in a sensitivity analysis, we assumed use of other mitigation
measures (eg, masking and ventilation). We further assumed
that 90% of teachers and staff and 50% of middle school stu-
dents were vaccinated with an 80% efficacious vaccine.?9-4!
In the eMethods in the Supplement and previous work,'® we
describe additional details of model structure, assumptions,
and data sources.

Testing Strategies

Scenarios Without Testing

We first modeled 3 scenarios without school-based testing:
(1) 5-day in-person attendance (the base case and the sched-
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ule assumed for all testing scenarios), (2) a hybrid model in
which half of each class attends school on Monday/Tuesday
and the other half on Thursday/Friday, and (3) fully remote
learning. In these scenarios, we assumed that individuals
with clinically identifiable symptoms isolated and under-
went testing outside of school on the day symptoms ap-
peared, that they received results within 48 hours of symp-
tom onset, and that the classroom cohort of a diagnosed
COVID-19 case quarantined for 10 days.*?

Diagnostic Testing

The test-to-stay strategy altered both how the school man-
aged the asymptomatic contacts of diagnosed COVID-19 cases
and how students and staff with symptoms of potential
COVID-19 were managed. After exposure to a confirmed case,
rather than quarantining, contacts remained in school and re-
ceived a rapid test each school day for 1 week, isolating only if
they tested positive. (This resembles the Test and Stay pro-
gram used in Massachusetts and elsewhere.**%%) In addition,
individuals with symptoms of possible COVID-19 took a rapid
test each day they had symptoms, isolating only after testing
positive. We assumed 80% test sensitivity during the infec-
tious period, and 100% specificity following a second confir-
matory test.*>4® We present both quarantine and test-to-stay
versions of each of the 5-day in-person scenarios modeled.

Screening and Surveillance

Screening entailed weekly polymerase chain reaction (PCR)
screening (on Mondays) of all students and teachers, with 90%
coverage, 90% sensitivity during infectiousness, and a 24-
hour test turnaround time. Surveillance entailed random
weekly PCR testing (90% sensitivity) of 10% to 20% of the
school population. Because of the small proportion of the
school tested, if 1 or more cases were detected during surveil-
lance, 90% of the school was screened the following day, in-
cluding vaccinated individuals, and if further cases were found,
the school continued weekly schoolwide screening (90% cov-
erage) rather than surveillance for the remainder of the month.
(We discuss considerations for threshold selection further in
the eMethods in the Supplement.)

Based on recent CDC guidance,'® we assumed that vacci-
nated individuals do not quarantine, but given recommenda-
tions to test vaccinated contacts,'® we included them in test-
to-stay measures and schoolwide screening. To maximize
power, surveillance sampled only unvaccinated individuals.

Costs
We based screening and surveillance costs on pooled PCR test-
ing of 8 specimens (eMethods in the Supplement). Costs of PCR
testing were estimated at $40 per assay (eTable 1in the Supple-
ment). Rapid testing for the test-to-stay scenario cost $6 per
assay. For both scenarios, we assume an $8 per-person cost of
labor and supplies for nasal swab collection. In a sensitivity
analysis, we also considered rapid testing with confirmatory
PCR for screening and surveillance.

In comparing the costs associated with remote learning
and the costs of testing, we took a modified societal perspec-
tive that focused on childcare or parent productivity costs
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(eMethods and eTable 1 in the Supplement); to be conserva-
tive with respect to the benefits of testing programs, we did
not include educational and other student costs (which are
likely to accrue but difficult to estimate) nor the health care-
related costs of COVID-19. For remote and hybrid education
for all students and for middle school quarantine/isolation, we
estimated the cost of a day of remote instruction based on the
average cost of group childcare (eTable 1in the Supplement).
For unplanned days that elementary students stayed at home
for quarantine/isolation, we estimated costs based on the av-
erage childcare worker’s wages over a 7-hour day to account
for the higher costs of last-minute scheduling or inability to
use group childcare (eTable 1in the Supplement).*” Although
parents may choose to supervise remote learning at home, we
assumed that the average productivity loss of supervising
at-home learning was comparable with childcare costs.

Outcome Estimation, Reporting, and Sensitivity Analysis

For each scenario, we ran the model 1000 times for 30 days
each (with no temporal discounting) and estimated the fol-
lowing outcomes over a 30-day period: average cumulative true
incidence of SARS-CoV-2 infection among staff and students,
cumulative cases detected, detection fraction (the ratio be-
tween cases detected and true infections), and proportion of
weekdays spent at home (for unplanned quarantine/
isolation or for planned days at home dictated by the virtual/
hybrid schedule). Sensitivity analyses for multiple param-
eters evaluated uncertainty in the infections prevented by
different strategies. Model code is publicly available as an R
package (implemented in version 4.0.2) at https://github.com/
abilinski/BackToSchool2.

|
Results

Simulated Effects of In-Person School Attendance
With COVID-19 Incidence
Figure 1 and eTable 2 in the Supplement show estimated 30-
day incidence, case detection, and school attendance out-
comes in different testing scenarios among 638 students and
60 staffin a simulated elementary school with no student vac-
cination or 460 students and 51 staff in a simulated middle
school with 50% vaccine coverage. At the elementary school
level, compared with fully remote instruction, 5-day in-
person attendance with quarantine was associated with an es-
timated average of 2.3 additional infections per school per
month at a community notification rate of 10 per 100 000
population per day (30% increase) and 9.4 additional infec-
tions at 50 community notifications per 100 000/d (25% in-
crease) (Figure 1A). Under the test-to-stay strategy, slightly
more transmission occurred; eg, an estimated mean of 11.6 in-
fections rather than 9.4 infections over the remote instruc-
tion baseline at 50 community notifications per 100 000/d.
In the middle school with 50% vaccination, 5-day atten-
dance with quarantine was associated with 4.9 additional in-
fections per school per month on average (45% increase) at 10
community notifications per 100 000/d and 17.9 infections
(33% increase) at 50 community notifications per 100 000/d
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(Figure 1E). The test-to-stay strategy was associated with 20.4
infections, rather than 17.9 infections over remote instruc-
tion at 50 community notifications per 100 000/d.

Simulated Effects of Transmission

With Weekly Screening and Surveillance

With weekly screening of all students and teachers, and with
isolation of the identified cases and quarantine of their un-
vaccinated classroom contacts, the incremental increase in
transmission associated with school attendance compared
with remote learning decreased. In a community with 10 no-
tifications per 100 000/d, when weekly screening was in place,
the excess incidence associated with school attendance was
an estimated 50% lower (1.1 fewer cases per school per month)
in elementary school and 57% lower (2.8 fewer cases) in middle
school. A slightly greater estimated proportion of school-
associated transmission was prevented by screening at higher
community incidence: for example, 71% (8.2 cases) in an el-
ementary school at 50 community notifications per 100 000/d
(Figure 1A and E and eTable 2 in the Supplement).

Weekly surveillance testing, at relatively low levels of com-
munity incidence (<25 cases/100 000/d), was associated with
a large projected transmission benefit relative to the number
of students tested (Figure 1A and E and eTable 2 in the Supple-
ment): for example, a 21% mean reduction in excess trans-
mission with weekly surveillance of 20% of students in an el-
ementary school at 10 community notifications per 100 000/d
(ie, about half of the 49% reduction seen with weekly 90%
screening); 36% of model runs obtained enough positive re-
sults to switch from 20% surveillance to schoolwide screen-
ing for the remainder of the month (eFigure 2 in the Supple-
ment). At higher community incidence, surveillance was
associated with nearly the same projected transmission ben-
efit as universal screening, but this was attributable to a high
probability of converting to universal screening (reaching
98.3% at 50 community notifications/100 000/d) (eFigure 2
in the Supplement).

As in the no-screening scenario, test to stay was associ-
ated with a slight reduction in the projected transmission
benefits of screening or surveillance in both elementary and
middle schools (Figure 1E and eTable 2 in the Supplement).

Simulated Effects of Case Detection and In-Person Learning
Days Lost With Screening and Surveillance
Screening and surveillance were associated with fewer infec-
tions but with a greater number of cases detected (by more than
a factor of 2 for weekly screening). Thus, without a test-to-
stay policy, the days spent in quarantine or isolation also in-
creased (Figure 1C and G). For example, weekly screening in
an elementary school was associated with an estimated aver-
age of 1.0 quarantine/isolation days per student per month at
10 community notifications per 100 000/d and 3.9 at 50 com-
munity notifications per 100 000/d (Figure 1C). In middle
school, quarantine of only unvaccinated students resulted in
fewer days of quarantine or isolation per student despite similar
incidence (Figure 1F and G).

Test to stay had the benefit of minimal quarantine and iso-
lation, estimated at less than 0.25 days per student per month
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even in scenarios with high community transmission and maxi-
mal case detection through weekly screening.

Costs

The testing costs of weekly screening began at an estimated
$69 per student per month at low community incidence
(Figure 2); as incidence increased, the increased cost of de-
convoluting positive pools was partially offset by quarantine-
related reductions in the number of tests performed (eFig-
ures 3and 4 in the Supplement). Above community notification
rates of 25 per 100 000/d, surveillance and screening had
similar costs because positive surveillance test results regu-
larly triggered schoolwide testing (Figure 2).

Accounting for childcare during quarantine and isola-
tion, the estimated societal costs associated with weekly
screening in an elementary school ranged from $109 per stu-
dent per month at community notification rates of 5 or less per
100 000/d, to $368 per student/mo at a community notifica-
tion rate of 50 per 100 000/d (eFigures 5 and 6 in the Supple-
ment). A test-to-stay strategy was associated with greater di-
agnostic costs but lower combined costs of testing plus
childcare at all community notification rates (Figure 2).
The estimated costs of a rapid antigen screening strategy were
similar to those of pooled PCR screening (eFigure 7 in the
Supplement).

Cost per Infection Averted

In the elementary school, the estimated costs of weekly screen-
ing per infection directly averted among students and teachers/
staff were less than $16 000 at community notification rates
of 25 or more cases per 100 000/d; these increased to $40 000
to $60 000 per infection averted at 10 cases per 100 000/d and
more than $300 000 per infection averted at 1 case per
100 000/d. In the middle school, greater risk of transmission
offset the comparative inefficiency of screening vaccinated
students, resulting in similar costs per infection averted as
the elementary school had (Figure 3). Cost per infection averted
was similar for rapid antigen screening and lower in a high-
transmission or unmasked school setting (eFigures 8 and 9 in
the Supplement).

Sensitivity Analysis
The estimated number of infections averted by screening, with
or without test to stay, was approximately 3 times higher in
schools without masking than in schools where screening was
added to mask use, in both elementary and middle schools
(eFigures 4-5,9, and 11-12 and eTable 3 in the Supplement). In-
fections averted by screening were also highly sensitive to vac-
cine coverage and vaccine efficacy (Figure 4, Figure 5, and eFig-
ures 10-12 and eTable 3 in the Supplement). The estimated
number of infections averted was slightly lower if screening
occurred later in the week or with a less sensitive test and was
less than 25% higher if screening occurred twice weekly in
schools with masking or other mitigation measures (Figure 4
and Figure 5).

The transmission increases associated with the test-to-
stay strategy were largest in the elementary school if the rapid
test had low sensitivity for detecting infectious individuals or

JAMA Pediatrics July 2022 Volume 176, Number 7

© 2022 American Medical Association. All rights reserved.

Downloaded from jamanetwork.com by Brown University user on 01/30/2026

683


https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapediatrics.2022.1326?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326
http://www.jamapediatrics.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2022.1326

684

Research Original Investigation

SARS-CoV-2 Testing, Screening, and Surveillance Strategies Among Simulated School Populations

Figure 2. Costs Associated With In-School COVID-19 Testing and/or Out-of-School Childcare for Different Risk-Reduction Strategies

at Varying Community Notification Rates
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if the community notification rate was high (Figure 4) and in
the middle school if vaccination coverage was low or testing
was only offered to unvaccinated individuals (Figure 5). For
surveillance, reducing the weekly percentage tested to 10% (vs
20%) was associated with smaller reductions in transmission
but still allowed a response to large outbreaks; surveillance
was more beneficial with less in-school mitigation or more
transmissible variants (eFigure 2 in the Supplement).

|
Discussion

This modeling study of a simulated population of primary
school students and simulated transmission of COVID-19 high-
lights that well-designed COVID-19 testing can help maintain
safe, 5-day in-person education despite a highly transmis-
sible (delta) variant. In particular, we underscore the impor-
tance of considering multiple dimensions of cost in school
reopening plans. While school-based testing increases expen-
ditures, these costs may be offset societally by reducing the

JAMA Pediatrics July 2022 Volume 176, Number 7

burden of COVID-19-related childcare costs currently borne by
parents and caregivers and costs associated with lost educa-
tional time.

Gains are particularly pronounced for expanded diagnos-
tic testing. We project that test to stay is associated with only
minor increases in transmission, even at high community case
rates. Such estimates are consistent with a 2021 randomized
controlled trial of test-to-stay programs in the United King-
dom, which were layered on top of twice-weekly screening.*®
We further estimate that test-to-stay strategies have lower so-
cietal costs than quarantine-based strategies and could main-
tain student absences to less than 0.25 school days per month.
Additional benefits of test to stay include situational aware-
ness of in-school transmission that can inform mitigation
policies as well as the option to adopt a broad definition of close
contact without associated loss of school time.

Our main test-to-stay specification allowed both close con-
tacts and symptomatic individuals to attend school after anega-
tive test. In practice, most schools set more conservative poli-
cies for symptomatic students, requiring them to remain home
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Figure 3. Cost per Infection Directly Prevented Among Students/Staff, Compared With a 5-Day In-Person Schedule
With No In-School Testing and High Mitigation
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Plots show the incremental cost per infection directly averted among students and staff. For testing costs, we show the strategy of weekly screening in which
exposed contacts quarantine at home, which dominates the test-to-stay strategy. By dominates, we mean that if optimizing over test costs only, it is strictly higher
value to quarantine contacts rather than implement test to stay. Likewise, for combined costs of testing plus childcare, we show the strategy of weekly screening
with exposed contacts undergoing daily rapid tests to stay at school, which dominates at-home quarantine. For alternative scenarios with rapid tests and/or lower
in-school mitigation, see eFigures 8 and 9 in the Supplement.

Figure 4. Sensitivity Analyses With Varying Parameter Values in an Elementary School
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Incidence change is estimated as a difference in the proportion of the school's students and teachers infected with COVID-19 per month, comparing the specified
testing strategy to 5-day school attendance without testing. See eFigure 11in the Supplement for scenarios without masking.

for certain significant symptoms (eg, fever), regardless of
etiology, or if they have symptoms strongly indicative of
COVID-19 (eg, loss of taste or smell). This renders our analysis
conservative with respect to the simulated effect of test to stay

with COVID-19 transmission; in sensitivity analyses, we show
that offering test to stay only to contacts maintains most
benefits with respect to learning days lost (eFigure 13 in the
Supplement).
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Figure 5. Sensitivity Analyses With Varying Parameter Values in a Middle School
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Incidence change is estimated as a difference in the proportion of the school’s students and teachers infected with COVID-19 per month, comparing the specified
testing strategy to 5-day school attendance without testing. See eFigure 12 in the Supplement for scenarios without masking.

We also provide information about the benefits and costs
of 2 additional testing strategies: screening and surveillance.
While previous analyses have documented that weekly screen-
ing can help control transmission, this analysis adds the find-
ing that under conservative assumptions, 5-day in-person
learning with screening is expected to be cost-saving from a
societal perspective, compared with the hybrid or remote mod-
els often used in 2020-2021.18:20:4° Cost savings persist across
levels of community transmission up to 100 cases per 100 000
population per day, even when improved case detection from
the screening program increases the time that students spend
in quarantine. In addition, although limited data on imple-
mentation of various measures by state or county suggest that
schools arelikely to implement simpler measures such as masks
before they adopt testing, our sensitivity analyses indicate
that screening or surveillance could offer the greatest benefit
in settings with low uptake of other mitigation measures.

In 2020-2021, screening was implemented in countries
such as Germany, Austria, Norway, and the United
Kingdom,>°->2 as well as some US states,>?>* but its role re-
mains debated. We find that the value of screening varies sub-
stantially across different levels of community transmission,
between elementary and middle schools, and by school attack

JAMA Pediatrics July 2022 Volume 176, Number 7

rate. In turn, school attack rate is influenced by factors includ-
ing mitigation measures (masking, ventilation, and distanc-
ing), vaccination uptake, and the properties of emerging
variants of concern. As a result, screening capacity may be
useful as an “insurance policy” to maintain in-personal in-
structional time if cases increase during fall/winter 2021 and
would be most efficiently targeted toward areas with low vac-
cination coverage or inconsistent adherence to other mitiga-
tion precautions.

In simulating the effect of testing with transmission, we
did notinclude the downstream infections averted beyond stu-
dents and staff, the medical costs associated with SARS-
CoV-2 infection, or other dimensions of cost (eg, educa-
tional). Our estimates of cost per infection averted are therefore
likely conservative, and when interpreting them, a school com-
munity’s willingness to pay per averted case should consider
onward transmission risk. For example, setting the value per
statistical life of $8 million,>* communities would be willing
to invest $48 000 to avert a downstream infection in an un-
vaccinated person aged 50 to 64 years and $720 000 per in-
fection averted in those older than 65 years.>®> Other impor-
tant planning inputs might include local hospital capacity and
any increased pediatric risks that may be associated with new
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variants. However, the widespread availability of external
federal funding may render the financial costs of testing less
consequential for districts than logistical and practical con-
siderations; smaller districts with fewer resources may re-
quire additional support to implement testing programs.'®

For districts concerned about in-school transmission but
without capacity to perform regular screening, weekly sur-
veillance of 10% to 20% of the school population may offer a
middle ground. Surveillance (with conversion to weekly
screening when cases are identified) can reduce therisk of large
outbreaks and may allow schools to reduce testing costs when
local incidence is low. However, surveillance of a small por-
tion of the school population is likely to miss early outbreaks
and requires regularly adapting school procedures. There-
fore, the benefit of surveillance is largest when local testing is
sparse (making it difficult to know how community case no-
tification maps to school incidence), local incidence is rap-
idly changing, or there is high uncertainty in the school attack
rate. Beyond transmission effects, the real-time information
provided by either screening or surveillance may have value
even at low incidence levels, by providing reassurance to edu-
cators and parents.

Limitations
There are a number of limitations to this analysis. Like all
models, this analysis relies on assumptions about trans-

Original Investigation Research

mission dynamics, test performance, and public health
responses, which are uncertain and often in flux. Public
health guidance continues to evolve, particularly in terms of
defining close contacts in the context of new variants and
recommended precautions for vaccinated individuals,
which may affect costs and benefits of testing strategies. In
addition, our model does not address the operational
aspects of specimen collection, laboratory transport, and
reporting of results, which some schools have navigated suc-
cessfully but nevertheless may pose barriers to adoption.!®
Nevertheless, this work highlights that flexible, strategic
testing can help ensure stable 5-day in-person education
throughout the 2021-2022 school year.

. |
Conclusions

In this modeling study of transmission of COVID-19 in simu-
lated US elementary and middle schools, screening tests
facilitated in-person schooling with limited transmission
risk across a range of community incidence, and test-to-stay
policies were associated with increased school attendance
but little incremental transmission. Surveillance was a use-
ful, reduced-cost option for detecting outbreaks and identi-
fying school environments that could benefit from increased
mitigation.
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eMethods

Model Structure

We implemented a previously published SEIR model of COVID-19 transmission.! For a simulated elementary
school (638 students grades K-5, 60 staff) and middle school (460 students grades 6-8 , 51 staff), we generated
households from synthetic population data and grouped students into fixed classroom cohorts with a primary
teacher.? Briefly, when individuals interacted with an agent (i.e. person) infected with SARS-CoV-2, transmission
risk was proportional to duration and intensity of exposure. The model drew stochastic outcomes assuming an
average incubation period of three days prior to the onset of infectiousness, two days of pre-symptomatic
transmission if symptoms develop,®* total infectious time of five days,’® and overdispersion of infectivity in
adolescents and adults (Table 1).>° We assumed that adults with fully asymptomatic disease transmit COVID-19 at
half the rate of those with any symptoms.!® Based on data from household contact tracing studies, we further
specified that, in absence of vaccination, children under 10 were half as susceptible as symptomatic adolescents and
adults.''"15 However, they experienced exogenous infection risk similar to the overall population due to adults’
relatively high vaccination coverage.

Beyond interactions with infectious agents within the simulation, students, staff, and their families had a probability
of becoming infected through other community interactions equivalent to community per capita daily incidence
assuming a 33% case detection rate. In vaccinated individuals, this risk was reduced by 80%; among unvaccinated
adults, we upweighted community risk such that adults overall matched the community rate on average.

In scenarios without “test to stay”, symptom-driven COVID diagnostic testing still occurred outside of the school
environment: individuals with COVID-19 who developed clinically-recognizable symptoms were assumed to self-
isolate from out-of-household contacts (including staying home from school) and to obtain testing in the community.
Results became available 48 hours after the first appearance of symptoms, at which point classrooms were notified
and quarantined for 10 days. Symptom-driven community-based testing, and self-isolation of symptomatic
individuals who had not been tested since symptom onset outside of test-to-stay strategies, were assumed to occur
regardless of in-school screening practices. We assumed that isolation and/or diagnostic testing for symptoms
caused by non-COVID etiologies occurred in 1% of students and staff each week, based on survey estimates of
student absenteeism and assuming that about half of reported absenteeism is due to illness.!® Costs of non-school-
based diagnostic testing were excluded in order to focus on the tests costs incurred by the school; this exclusion
results in conservative estimates of the societal cost savings of the test-to-stay strategy.

For in-school testing, we assumed separate anterior nasal swab specimens were collected from each person, samples
from up to 8 specimens from a single classroom were pooled and run as a single PCR, and residual individual
specimens were held for testing if the corresponding pool was positive. We further assumed negligible loss of
sensitivity to detect active infection from pooled testing.!”!® Results were available 24 hours after testing. When a
pooled specimen yielded a positive result, all individual specimens that had been included in the pool were
immediately tested separately using PCR to identify the positive individual(s).

Of note, when testing occurs out of school, turnaround time is longer than for in-school testing (48 hours vs. 24
hours) because in the former case, we model the time from symptom onset to PCR results. This includes the time
required to decide to test and to access testing, in addition to the turnaround time for the test itself. In addition, we
assume that schools with screening programs will work with a lab that can handle their consistent volume of testing
with rapid turnaround.

Model Parameterization and Calibration

Model parameterization is discussed at length in the Supplement of !. Briefly, we first identified household attack
rates (including differential susceptibility and infectiousness of young children).!®?! We adjusted these for the
length of time spent in school and reduced infectiousness of asymptomatic individuals to estimate attack rates with
no or minimal mitigation.'® We then further adjusted them for a range of mitigation strategies. To partially validate
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our model, we compared our estimates of in-school attack rate and in-school R to those from empirical studies. We
estimated in-school R, with high mitigation and classroom quarantine and “bubbles” to be 0.2 for elementary schools
and 0.64 in high schools, consistent with estimates from schools during 2020-2021 (e.g., 2%). Our estimates also
reflect the wide range of attack rates across mitigation levels identified both in data directly from schools *~2° and
from household/population-level estimates,??7 as well as the association between community incidence level and
transmission risk.?

While the initial version of the model assumed that children under 10 are half as infectious as older children in all
interactions, emerging evidence suggests that they may be equally or more infectious in a household setting.!** We
therefore revised this assumption so that that young children were as infectious as adolescents and adults in
households, but remained half as infectious in classrooms with mitigation measures, the latter reflecting age-specific
classroom transmission rates in available empirical data.

We assumed that the delta variant is twice as transmissible than the wild type variant and that this multiplicative
increase is constant across levels of mitigation.?®3! The latter assumption is uncertain and requires further empirical
evaluation in different contexts; for example, while it may be realistic with cloth masks, early anecdotal evidence
from health care settings suggests that high filtration masks (e.g. N95, KN95) may protect nearly as well against the
delta variant as they do against wild type.

Nevertheless, for our base case, we assumed high mitigation with the delta variant (R; of approximately 0.4 in
elementary schools and 1.2 in middle schools, absent vaccination) to reflect the population of schools most likely to
implement testing and likely ordering of interventions (e.g., testing will likely only be implemented in schools that
have already implemented masking). In a sensitivity analysis, we also present our results in a scenario with the
attack rate doubled, to correspond to a scenario with reduced mitigation (e.g., no masking).’? At the time of writing,
there were limited data to update our validation for the delta variant during the 2021-22 school year. Thus far,
significant heterogeneity persists, with some schools reporting minimal in-school transmission,** while others have
identified significant outbreaks.>* Generally more transmission has been reported in schools with fewer mitigation
measures.*

We assumed a base case 80% vaccine efficacy against the delta variant, a decrease compared to the wild type.3637¢2)
However, vaccine efficacy against delta remains somewhat uncertain, with estimates in the literature from 50-90%
and most around 70-80% (e.g., see studies summarized in **). This range reflects both mRNA vaccines and recent
evidence on the J&J vaccine, with estimated 78% efficacy against infection in states with high delta prevalence
during June/July 2021.3° Our base case of 80% reflects these recent studies; we chose the higher estimate to reflect
that students vaccinated more recently may be less likely to show effects of waning in the near-term, teachers have
been approved for boosters expected to increase vaccine efficacy, and some evidence suggests that even if infected,
vaccinated individuals have a lower probability of transmission to contacts.*%4!

Surveillance Thresholds

Within a small school community, it is challenging to set an optimal threshold for triggering further investigation
when conducting surveillance. We expect some COVID-19 cases to enter a school from the community even if no
transmission occurs within the school, and ideally the threshold for triggering additional testing should take this into
account. However, when testing a small fraction of the school (10-20%), the expected number of asymptomatic
cases detected, assuming no in-school transmission, is generally close to 0. In the paper, we chose a 1-case trigger
threshold for 3 reasons:

1. At low-to-moderate community notification rates (1-25 cases per 100,000/day), no surveillance scenario
with a threshold above 1 could detect even large outbreaks of at least 10 in-school transmissions with any
regularity: the maximum probability of detection (i.e., maximum sensitivity) was 35% for a 2-case
threshold at 25 cases per 100,000/day. By contrast, a 1-case threshold had a detection probability of 30-
75% across 1-25 cases per 100,000/day, while maintaining low rates of false positive triggers.

2. In our model, there was generally at least some in-school transmission at high levels of community
incidence, making threshold selection less of a concern, since false positives would be rare under any
threshold. (For the same reason, surveillance testing as a method of detecting outbreaks is less useful at
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these levels, although a benefit remains if community case detection is low, which makes schools less
likely to be aware of local incidence risks.)

3. If, in practice, a school calibrated the expected number of cases and associated threshold to the observed
community incidence rate, this would be a significant underestimate (and for most community incidence
levels we evaluated would be near 0). (However, it is not straightforward to correct for case detection, as
there is no public, consistently-collected data source in the United States for estimating case detection rate,
and most school leaders with whom we spoke would not be comfortable making such an estimate.
Comparing percent positivity from in-school testing to population testing is inappropriate, as community
testing encompasses primarily exposed symptomatic individuals with a much higher probability of
infection than randomly selected individuals.)

Nevertheless, schools (or more broadly, districts) should adapt surveillance thresholds to meet their needs and level
of caution. Our model is a stylized example over a single month for a single school. A longer-term strategy might
also include dynamic changes back to surveillance, as well as stricter trigger thresholds when community incidence
is high or when surveying large districts.
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eFigure 1. Model diagram
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eTable 1. Model parameters

| Estimate

Sources/Notes

Key transmission model parameters (see ' for full list and sources)

Duration of infectiousness

Lognormal (5, 2)

Calibrated to match serial interval 4243,

This ensures that early high
transmissibility is captured, though a
long tail of reduced infectiousness likely
exists. (See sensitivity analyses.)

Classroom adult-adult
symptomatic daily attack
rate

2%
(1% or 4% in sensitivity
analysis)

Daily transmission rate between two
unvaccinated adults during shared full-
day contact

The model further adjusts for reduced
elementary school student susceptibility
in the classroom (RR=0.5) +
infectiousness (RR=0.5); and reduced
infectiousness of asymptomatic middle
school students + adults (RR=0.5).

See eMethods for details

60 teachers/staff, 30
classes

Middle: 460 students, 51
teachers/staff, 21 classes

Relative attack rate for 0.13 Based on 45 minutes/day of exposure
random school contacts
(vs. classroom)
Household attack rate 50% 2223 (doubled for delta) and
Probability of fully 20%, children (elementary + | 10-12,15
asymptomatic disease high school)
40%, adults
Probability that disease 20%, children (elementary + | 10,45
has clinically recognizable | high school)
symptoms 40%, adults
Presymptomatic period Normal 46
(days) (1.2,0.4)
School size Elementary: 638 students, 47

Community COVID-19
notification rate

Varied between 1 and 100
diagnosed cases per
100,00 population per day

Case detection ratio in
community

1/3

Older US modeling estimate and current
UK surveillance estimate 484°

There is some evidence that this may be
low in recent waves of infections;
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surveillance or screening can help to
ascertain the true value.

Vaccine effectiveness 80% 36,37
36,37
Teacher vaccination 90% %0 assuming full completion of regimens
uptake among those who received their first
dose by April + 10% additional uptake
Testing parameters
PCR
Sensitivity of PCR testing | 0.9 51-%4 Combined with 90% screening

during infectious period for
screening + surveillance

uptake, 81% of infectious students and
staff are detected.

Frequency of testing

0, 1x, or 2x per week

Testing is assumed to occur on Monday
+- Thursday

School-based screening 1 day

test turnaround time

Time from symptom onset | 2 days

to result of community-

based diagnostic tests

Duration of isolation after 10 days 55
COVID-19 diagnosis

Duration of quarantine 10 days 55
after COVID-19 exposure

Rapid testing

Sensitivity of rapid test 0.8 While the sensitivity of rapid tests is

during infectious period for
test-to-stay

lower than PCR tests over the full course
of infection, a substantial body of
evidence suggests that sensitivity is
highest when individuals have sufficient
viral load to transmit infection.%®
Because test-to-stay aims specifically to
prevent transmission, we use sensitivity
estimates focused on detection of
infectious levels of virus. These include
Abbott BinaxNOW culture-positive
sensitivity of 93% and 79% among
symptomatic and asymptomatic
individuals, respectively, in Pima
County®%® and sensitivity >90% among
children in a school setting with Ct
values in the infectious range below
2557, A longitudinal study on the Quidel
SARS Sofia antigen FIA similarly
estimated 90% sensitivity for detecting
individuals while viral culture positive.58
Last, UK surveillance data supported at
least 79% sensitivity of antigen lateral
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flow devices for detection of infectious
individuals.%® In our base case, we use
80% as a conservative figure based on
these estimates.

School-based test-to-stay
turnaround time

15 minutes (same-day
isolation of positive cases)

Costs

Cost per PCR run (per 8- $40 Consistent with prices paid by early

sample pool, and per adopters , Massachusetts school

individual in pool for testing, and some types of Medicare

testing after a positive reimbursement

pooled result)

Cost per rapid test run $6 Assumes 50% discount from retail prices
per documented bulk rates 62(19),
consistent with other analyses 3

Added cost per specimen | $8 64

collected (both PCR and

rapid)

Cost per planned day at $35.50 Based on group childcare costs for pre-

home for elementary kindergarten 8%, summertime childcare

student, or any day at costs for school-aged children are similar

home for middle school 66

student

Cost per unplanned day at | $85.90 Based on childcare worker wages ¢’

home, elementary student
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eFigure 2. Surveillance characteristics. cColorindicates the percentage of the school screened weekly (from unvaccinated individuals) under surveillance, while
the line type indicates the transmission level. The left panels depict the probability of triggering screening. The middle panels depict the probability of in-school transmission,
conditional on triggering screening (“true positives”). The right panels depict the probability of fewer than 3 in-school transmissions given no screening trigger (“true negatives”).
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eFigure 3. Testing costs, as dollars per student per month, in an elementary

school. when exposed students quarantine at home, costs plateau at higher levels of incidence as classroom quarantines
cause screening days to be missed. Potential costs of community-based testing by exposed students or their contacts are not

modeled. For a “test to stay” strategy that provides in-school rapid testing to symptomatic individuals and asymptomatic exposed
contacts, testing costs increase as incidence rises.
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eFigure 4. Testing costs, as dollars per student per month, in a middle school.
When exposed students quarantine at home, costs plateau at higher levels of incidence, as classroom quarantines cause screening
days to be missed. Potential costs of community-based testing by exposed students or their contacts are not modeled. For a “test to

stay” strategy that provides in-school rapid testing to symptomatic individuals and asymptomatic exposed, testing costs increase as
incidence rises.
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eFigure 5. Childcare or parent productivity costs (elementary school). Pianned costs
reflect scheduled days of remote learning, and unplanned costs reflect days spent in isolation or quarantine. Rows reflect two
different approaches to managing exposed contacts (quarantine for 10 days at home, top row; or staying at school with a week of
daily rapid tests, bottom row). “Test to stay” is not modeled for Hybrid and Remote schedules.
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eFigure 6. Childcare or parent productivity costs (middle school). we assume that for a

combination of health and logistical reasons, full classrooms quarantine after exposure. If only unvaccinated students were asked to
quarantine, then costs of 5-Day + Quarantine scenarios would be reduced.
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eFigure 7. Costs associated with rapid antigen screening tests. (weekiy tests at $6 per test +
$8 per sample collection, PCR confirmation of positive results with same one-day turnaround, 0.5% false positive rapid tests, no
change in sensitivity for acute infection) compared to the costs of schedule-based mitigation and of full-time in-person attendance
without asymptomatic screening.
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eFigure 8. Cost-effectiveness of rapid screening (cost per infection directly
averted among students and staff), comparing weekly screening to full-time
attendance without screening, under the same rapid screening assumptions as in

eFigure 7. For testing costs (orange), we show the strategy of weekly screening in which exposed contacts quarantine at
home (solid line), which dominates the “test to stay” strategy. By “dominates”, we mean that if optimizing over test costs only, it is
strictly higher value to quarantine contacts, rather than implement test-to-stay. Likewise, for combined costs of testing plus

childcare (blue), we show the strategy of weekly screening with exposed contacts undergoing daily rapid tests to stay at school
(dashed line), which dominates at-home quarantine.
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eFigure 9. Cost-effectiveness of weekly screening (cost per infection directly
averted among students and staff) in a high-transmission or unmasked school

setting. Screening is compared to full-time attendance without screening, assuming a two-fold increase in transmission rate
over the base case (due to increased variant transmissibility or reduced in-school mitigation). For testing costs (orange), we show
the strategy of weekly screening in which exposed contacts quarantine at home (solid line), which dominates the “test to stay”
strategy. By “dominates”, we mean that if optimizing over test costs only, it is strictly higher value to quarantine contacts, rather than
implement test-to-stay. Likewise, for combined costs of testing plus childcare (blue), we show the strategy of weekly screening with
exposed contacts undergoing daily rapid tests to stay at school (dashed line), which dominates at-home quarantine.
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eFigure 10: Comparison of testing strategies, if vaccination coverage is higher

(elementary) or lower (middle) than in the main analysis. They axis scale has been modified
compared to earlier figures, to accommodate a higher incidence in the middle school setting.
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eFigure 11. Impact of testing strategies on COVID-19 incidence with and without

masking and with varying parameter values, in an elementary school. incidence impact is
estimated as a difference in the proportion of the school’s students and teachers infected with COVID per month, comparing the
specified testing strategy to 5-day school attendance without testing. The scenario without masking corresponds to an assumption
of a two-fold higher attack rate.
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eFigure 12. Impact of testing strategies on COVID-19 incidence with and without
masking and with varying parameter values, in a middle school. incidence impact is
estimated as a difference in the proportion of the school’s students and teachers infected with COVID per month, comparing
the specified testing strategy to 5-day school attendance without testing. The scenario without masking corresponds to an
assumption of a two-fold higher attack rate.
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eFigure 13: Comparison of testing strategies, if test to stay is used only for
asymptomatic contacts (and symptomatic individuals are required to isolate)
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eFigure 14: Expected increase in incidence with testing and hybrid models (as a
proportion of school per month, in the elementary setting), compared to remote
schooling.
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eTable 2. Comparison of transmission, case-detection, operational, and cost
outcomes between different schedules and screening frequencies

Infection |Difference in [Proportion of [Proportion of In-person Testing costs ($ [Testing + child

incidence [proportion offincremental |[cases attendance |per student per (care costs ($
(proportion school infections detected (proportion ofmonth) per student
of school |infected, per [prevented (of school days) per month)
per month) month vs difference

full-time between 5-day

\without no screening

screening  jand Remote)

Elementary school, community notification rate 10/100k/day

5-Day, no
screening,
quarantine 0.014 0 0 0.22 0.984 0 27.04

5-Day, no
screening, test-
to-stay 0.015 0.0005 -0.16 0.21 0.999 4.83 6.05

5-Day, weekly
10%
surveillance,
quarantine 0.014 -0.0003 0.1 0.33 0.976 21.96 62.69

5-Day, weekly
10%
surveillance,
test-to-stay 0.014 -0.0001 0.04 0.35 0.999 29.61 31.55

5-Day, weekly
20%
surveillance,
quarantine 0.013 -0.0007 0.21 0.41 0.97 42 92.08

5-Day, weekly
20%
surveillance,
test-to-stay 0.014 -0.0002 |0.07 0.44 0.999 52.15 54.56

5-Day, 1x/week
screening,
quarantine 0.012 -0.0016 0.5 0.63 0.956 69.81 144.2

5-Day, 1x/week
screening, test-
to-stay 0.013 -0.001 0.3 0.7 0.998 82.15 85.73

5-Day, 2x/week
screening,
quarantine 0.012 -0.0021 0.65 0.76 0.951 124.53 206.88

5-Day, 2x/week
weekly

screening, test-
to-stay 0.012 -0.0016  |0.49 0.87 0.997 139.74 143.99

Hybrid,
quarantine 0.011 -0.0028 |0.85 0.22 0.396 0 423.3

Hybrid, test-to-
stay 0.012 -0.0023 |0.69 0.13 0.4 1.18 418.61
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Remote 0.011 -0.0033 |1 0 0 0 695.32

Elementary school, community notification rate 50/100k/day

5-Day, no
screening,
quarantine 0.071 0.003 -0.23 0.24 0.996 21.01 27.7

5-Day, no
screening, test-
to-stay 0.062 -0.0051 0.38 0.47 0.863 50.63 281.53

5-Day, weekly
10%
surveillance,
quarantine 0.065 -0.0027 0.2 0.59 0.991 104.92 119.87

5-Day, weekly
10%
surveillance,
test-to-stay 0.061 -0.0067 0.49 0.53 0.843 66.63 331.12

5-Day, weekly
20%
surveillance,
quarantine 0.063 -0.0047 |0.35 0.67 0.99 129.39 145.92

5-Day, weekly
20%
surveillance,
test-to-stay 0.059 -0.0087 0.64 0.59 0.825 73.87 368.37

5-Day, 1x/week
screening,
quarantine 0.062 -0.0054 04 0.72 0.99 125.56 143.11

5-Day, 1x/week
screening, test-

to-stay 0.057 -0.0101 0.75 0.7 0.814 128.45 441.69
5-Day, 2x/week

screening,

quarantine 0.06 -0.0078 0.57 0.88 0.988 191.77 212.51
5-Day, 2x/week

weekly

screening, test-

to-stay 0.056 -0.0113 0.84 0.22 0.386 0 440.18
Hybrid,

quarantine 0.058 -0.0097 0.71 0.13 0.399 4.87 423.27
Hybrid, test-to-

stay 0.054 -0.0135 1 0 0 0 695.32
Remote 0.023 0 0 0.22 0.989 0 7.54
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Middle school, community notification rate 10/100k/day
5-Day, no

screening,
quarantine 0.021 -0.0014 0.2 0.38 0.983 80.68 92.29

5-Day, no
screening, test-
to-stay 0.021 -0.0015 |0.22 0.42 0.998 93.1 94.54

5-Day, weekly
10%
surveillance,
quarantine 0.02 -0.0024 0.35 0.45 0.98 107.41 121.4

5-Day, weekly
10%
surveillance,
test-to-stay 0.021 -0.0019 0.27 0.51 0.997 124.4 126.11

5-Day, weekly
20%
surveillance,
quarantine 0.019 -0.0041 0.57 0.63 0.974 136.95 154.63

5-Day, weekly
20%
surveillance,
test-to-stay 0.02 -0.0032 0.46 0.69 0.997 150.17 152.34

5-Day, 1x/week
screening,
quarantine 0.018 -0.0046 0.65 0.77 0.971 245.29 264.88

5-Day, 1x/week
screening, test-

to-stay 0.018 -0.0048 0.67 0.87 0.996 260.21 262.72
5-Day, 2x/week

screening,

quarantine 0.016 -0.0066 0.93 0.22 0.397 0 412.63
5-Day, 2x/week

weekly

screening, test-

to-stay 0.017 -0.0055 0.78 0.13 0.4 1.5 412.52
Hybrid,

quarantine 0.016 -0.0071 1 0 0 0 684.79
Hybrid, test-to-

stay 0.104 0 0 0.22 0.961 0 26.91
Remote 0.107 0.0035 -0.14 0.24 0.994 26.33 30.52
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Middle school, community notification rate 50/100k/day
5-Day, no

screening,
quarantine 0.096 -0.0077 (0.3 0.6 0.987 206.27 215.51

5-Day, no
screening, test-
to-stay 0.09 -0.0142 |0.55 0.53 0.908 143.7 207.01

5-Day, weekly
10%
surveillance,
quarantine 0.093 -0.0105 0.41 0.64 0.986 223.31 232.83

5-Day, weekly
10%
surveillance,
test-to-stay 0.088 -0.0157 0.61 0.61 0.898 146.18 215.84

5-Day, weekly
20%
surveillance,
quarantine 0.092 -0.0117 0.46 0.72 0.985 203.89 214.44

5-Day, weekly
20%
surveillance,
test-to-stay 0.085 -0.0188 0.73 0.74 0.892 257.24 331.33

5-Day, 1x/week
screening,
quarantine 0.087 -0.0171 0.66 0.88 0.982 323.61 335.85

5-Day, 1x/week
screening, test-

to-stay 0.08 -0.0234 0.91 0.22 0.392 0 416.69
5-Day, 2x/week

screening,

quarantine 0.085 -0.0189 |0.74 0.14 0.399 6.87 418.51
5-Day, 2x/week

weekly

screening, test-

to-stay 0.078 -0.0257 1 0 0 0 684.79
Hybrid,

quarantine 0.014 0 0 0.22 0.984 0 27.04
Hybrid, test-to-

stay 0.015 0.0005 -0.16 0.21 0.999 4.83 6.05
Remote 0.014 -0.0003 0.1 0.33 0.976 21.96 62.69
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eTable 3. Sensitivity analyses

Expected incidence

with no testing Change in Change in
Base (proportion of incidence incidence with | Change in
case Sensitivity school infected per | with screening & incidence
Variable varied value analysis value | month) screening TTS with TTS

Elementary,

Masked Student vaccination coverage 0% 30% 0.0317 -0.0028 -0.0016 0.0015
Student vaccination coverage 0% 90% 0.0273 -0.0011 -0.0012 -0.0003
Mean infectious duration 5 days 10 days 0.0386 -0.0063 -0.0057 0.0002

) Only test
Population tested Al unvaccinated 0.0354 -0.0053 -0.0033 0.0008
Community notification rate 25/100k/day | 10/100k/day 0.0145 -0.0019 -0.0015 0.0002
Community notification rate 25/100k/day | 50/100k/day 0.0679 -0.0096 -0.0064 0.0020
Rapid test sensitivity 80% 60% 0.0351 -0.0049 -0.0037 0.0011
Screening days per week 1 2 0.0346 -0.0054 -0.0041 0.0014
Screening sensitivity 81% 63 0.0346 -0.0035 -0.0022 0.0014
Screening day Monday Friday 0.0346 -0.0024 -0.0011 0.0014
Screening day Monday Thursday 0.0346 -0.0034 -0.0020 0.0014
Screening day Monday Wednesday 0.0346 -0.0033 -0.0026 0.0014
Screening day Monday Tuesday 0.0346 -0.0042 -0.0025 0.0014
Vaccine efficacy 80% 50% 0.0356 -0.0046 -0.0029 0.0021
Vaccine efficacy 80% 90% 0.0344 -0.0045 -0.0036 0.0013
Baseline 0.0346 -0.0043 -0.0032 0.0014
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Elementary,

Unmasked Student vaccination coverage 0% 30% 0.0421 -0.0082 -0.0066 0.0026
Student vaccination coverage 0% 90% 0.0288 -0.0012 -0.0006 0.0012
Mean infectious duration 5 days 10 days 0.0516 -0.0153 -0.0135 0.0023
Population tested All uor?\iééi?r:ated 0.0504 -0.0130 -0.0090 0.0054
Community notification rate 25/100k/day | 10/100k/day 0.0217 -0.0060 -0.0050 0.0010
Community notification rate 25/100k/day | 50/100k/day 0.0927 -0.0233 -0.0171 0.0098
Rapid test sensitivity 80% 60% 0.0494 -0.0126 -0.0071 0.0072
Screening days per week 1 2 0.0506 -0.0159 -0.0132 0.0043
Screening sensitivity 81% 63 0.0506 -0.0120 -0.0078 0.0043
Screening day Monday Friday 0.0506 -0.0086 -0.0057 0.0043
Screening day Monday Thursday 0.0506 -0.0105 -0.0073 0.0043
Screening day Monday Wednesday 0.0506 -0.0118 -0.0085 0.0043
Screening day Monday Tuesday 0.0506 -0.0127 -0.0093 0.0043
Vaccine efficacy 80% 50% 0.0524 -0.0136 -0.0104 0.0054
Vaccine efficacy 80% 90% 0.0495 -0.0131 -0.0098 0.0030
Baseline 0.0506 -0.0133 -0.0105 0.0043

Middle,

Masked Student vaccination coverage 50% 30% 0.0645 -0.0150 -0.0118 0.0012
Student vaccination coverage 50% 90% 0.0412 -0.0021 -0.0019 0.0002
Mean infectious duration 5 days 10 days 0.0569 -0.0101 -0.0096 0.0018
Population tested All uor?\gé?:isr:ated 0.0540 -0.0072 -0.0039 0.0038
Community notification rate 25/100k/day | 10/100k/day 0.0221 -0.0032 -0.0027 0.0013
Community notification rate 25/100k/day | 50/100k/day 0.1029 -0.0157 -0.0117 0.0048
Rapid test sensitivity 80% 60% 0.0553 -0.0099 -0.0072 0.0013
Screening days per week 1 2 0.0539 -0.0100 -0.0087 0.0025
Screening sensitivity 81% 63 0.0539 -0.0066 -0.0050 0.0025
Screening day Monday Friday 0.0539 -0.0044 -0.0035 0.0025
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Screening day Monday Thursday 0.0539 -0.0063 -0.0047 0.0025
Screening day Monday Wednesday 0.0539 -0.0076 -0.0048 0.0025
Screening day Monday Tuesday 0.0539 -0.0087 -0.0068 0.0025
Vaccine efficacy 80% 50% 0.0660 -0.0143 -0.0109 0.0031
Vaccine efficacy 80% 90% 0.0512 -0.0075 -0.0069 0.0007
Baseline 0.0539 -0.0083 -0.0065 0.0025

Middle,

Unmasked Student vaccination coverage 50% 30% 0.1185 -0.0469 -0.0363 0.0145
Student vaccination coverage 50% 90% 0.0507 -0.0061 -0.0055 0.0006
Mean infectious duration 5 days 10 days 0.0831 -0.0281 -0.0262 0.0051

Only test
Population tested Al unvaccinated 0.0876 -0.0230 -0.0119 0.0117
Community notification rate 25/100k/day | 10/100k/day 0.0391 -0.0135 -0.0116 0.0025
Community notification rate 25/100k/day | 50/100k/day 0.1556 -0.0446 -0.0346 0.0118
Rapid test sensitivity 80% 60% 0.0877 -0.0276 -0.0202 0.0107
Screening days per week 1 2 0.0882 -0.0329 -0.0289 0.0062
Screening sensitivity 81% 63 0.0882 -0.0226 -0.0184 0.0062
Screening day Monday Friday 0.0882 -0.0219 -0.0150 0.0062
Screening day Monday Thursday 0.0882 -0.0220 -0.0173 0.0062
Screening day Monday Wednesday 0.0882 -0.0248 -0.0202 0.0062
Screening day Monday Tuesday 0.0882 -0.0266 -0.0219 0.0062
Vaccine efficacy 80% 50% 0.1297 -0.0537 -0.0453 0.0086
Vaccine efficacy 80% 90% 0.0789 -0.0234 -0.0180 0.0042
Baseline 0.0882 -0.0274 -0.0225 0.0062
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