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Tuberculosis control interventions targeted to previously
treated people in a high-incidence setting: a modelling
study

Florian M Marx*, Reza Yaesoubi*, Nicolas A Menzies, Joshua A Salomon, Alyssa Bilinski, Nulda Beyers, Ted Cohen

Summary

Background In high-incidence settings, recurrent disease among previously treated individuals contributes
substantially to the burden of incident and prevalent tuberculosis. The extent to which interventions targeted to this
high-risk group can improve tuberculosis control has not been established. We aimed to project the population-level
effect of control interventions targeted to individuals with a history of previous tuberculosis treatment in a
high-incidence setting.

Methods We developed a transmission-dynamic model of tuberculosis and HIV in a high-incidence setting with a
population of roughly 40000 people in suburban Cape Town, South Africa. The model was calibrated to data
describing local demography, TB and HIV prevalence, TB case notifications and treatment outcomes using a Bayesian
calibration approach. We projected the effect of annual targeted active case finding in all individuals who had
previously completed tuberculosis treatment and targeted active case finding combined with lifelong secondary
isoniazid preventive therapy. We estimated the effect of these targeted interventions on local tuberculosis incidence,
prevalence, and mortality over a 10 year period (2016-25).

Findings We projected that, under current control efforts in this setting, the tuberculosis epidemic will remain in
slow decline for at least the next decade. Additional interventions targeted to previously treated people could
greatly accelerate these declines. We projected that annual targeted active case finding combined with secondary
isoniazid preventive therapy in those who previously completed tuberculosis treatment would avert
40% (95% uncertainty interval [UI] 21-56) of incident tuberculosis cases and 41% (16-55) of tuberculosis deaths
occurring between 2016 and 2025.

Interpretation In this high-incidence setting, the use of targeted active case finding in combination with secondary
isoniazid preventive therapy in previously treated individuals could accelerate decreases in tuberculosis morbidity
and mortality. Studies to measure cost and resource implications are needed to establish the feasibility of this type of
targeted approach for improving tuberculosis control in settings with high tuberculosis and HIV prevalence.
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Introduction
Worldwide, an estimated 10-4 million people developed
tuberculosis and 1-8 million deaths were attributable to
the disease in 2015.' Substantial innovation in
tuberculosis control is needed to reach the targets of
the new global End TB Strategy, which aims to eliminate
the disease by the year 2035.? The rates of tuberculosis
decline must accelerate in settings with the highest
disease incidence, some of which are located in
southern Africa and are facing the dual burden of
tuberculosis and HIV.® In these settings, the prevalence
of untreated tuberculosis remains high, and
conventional control approaches that rely on passive
case finding can fail to identify infectious cases early
enough to prevent transmission.**

Active case finding and wide-scale use of preventive
therapy have been considered as enhanced activities for
improving tuberculosis control, but these approaches
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require substantial investment.” Furthermore, dis-
appointing results from community-randomised trials
of population-wide case finding and preventive therapy
interventions® have tempered enthusiasm for
untargeted use of these interventions. It remains
unknown whether targeting of case finding and
preventive therapy to high-risk groups could be an
effective approach for disease control in communities.
The broader effect of a targeted approach depends on
whether it is possible to prevent disease or reduce the
duration of infectiousness among an easily identifiable
subgroup that experiences a high relative risk of disease
and is responsible for a substantial proportion of
transmission.

One subgroup that might be attractive for targeted
interventions is individuals with a history of previous
tuberculosis treatment.” Studies from southern Africa
show a high incidence of recurrent tuberculosis even
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Research in context

Evidence before the study

Up to now, no empirical studies have been done of the
population-level effect of interventions that aim to prevent
recurrent disease or more rapidly detect tuberculosis in
previously treated people. To establish whether
population-based mathematical models have been employed to
estimate the effect of tuberculosis interventions targeted to
previously treated people, we did a PubMed search of relevant
articles published in any language through March 7, 2017, using
the search terms “(tuberculosis) AND (recurren* OR relapse OR
reinfection OR re-infection OR re-treatment OR previous
treatment) AND (model* OR simulation)”. We also reviewed
titles and abstracts of mathematical modelling studies identified
through an earlier comprehensive systematic literature review of
studies describing mathematical and economic modelling of
tuberculosis published through March 30, 2013 (conducted by
Tuberculosis Modeling and Analysis Consortium [TB-MAC]).
While mathematical models have considered the effect of
improving treatment outcomes as a means of reducing relapse
and associated transmission, none has addressed preferential
targeting of tuberculosis control interventions to former
tuberculosis patients.

Added value of this study
We developed a transmission-dynamic mathematical model
of the tuberculosis epidemic and calibrated it to

after previous successful treatment," resulting from
both endogenous reactivation and exogenous re-
infection.” We recently documented a large burden of
prevalent tuberculosis in previously treated adults in
24 high tuberculosis burden communities in southern
Africa, consistent with the hypothesis that this risk
group drives a substantial proportion of transmission
in these settings.”

In this study, we used a transmission-dynamic model
to project the effect of two targeted control
interventions—targeted active case finding and
secondary isoniazid preventive therapy—in individuals
who previously completed tuberculosis treatment in a
high-incidence setting in suburban Cape Town,
South Africa. We estimated the effect of these targeted
interventions on tuberculosis incidence, prevalence,
and mortality over a 10-year period.

Methods

Modelling approach

We developed a stochastic compartmental transmission-
dynamic model of the tuberculosis and HIV epidemic
in a high-incidence setting of roughly 40000 residents
in suburban Cape Town, South Africa; the appendix
provides details about the study setting. The
tuberculosis component of our model followed the
conventions of earlier models,”* with additional

epidemiological and demographic data from a setting with a
high incidence of tuberculosis in suburban Cape Town,

South Africa. High rates of recurrent tuberculosis and a high
prevalence of tuberculosis in previously treated people have
previously been reported from this setting. We presented
estimates of the potential effect of tuberculosis interventions
targeted to people who completed an episode of tuberculosis
treatment and noted that targeted prevention and case
finding efforts could yield substantial benefits for tuberculosis
control at the population level.

Implications of all the available evidence

Our results suggest substantial public health potential for
control interventions targeted towards individuals with a
history of previous tuberculosis treatment in settings with a
high disease incidence. In these settings, previously treated
people are especially attractive for targeted control
interventions because they remain at an increased risk of active
tuberculosis after apparent cure, contribute substantially to
onward transmission, and should be readily identifiable by
national tuberculosis programmes. Efforts to establish the
feasibility and costs of such targeted interventions are needed
to establish their cost-effectiveness in tuberculosis and HIV
endemic settings.

structure to distinguish between individuals who were
never treated for tuberculosis (treatment-naive) and
those who were previously treated for tuberculosis
(treatment-experienced; figure 1).

We adopted previous ranges for parameters that
allowed for differential partial immunity against re-
infection and differential reactivation rates in
treatment-experienced and treatment-naive, latently
infected individuals, and differential delay in detecting
tuberculosis in individuals with and without history of
tuberculosis treatment (table 1). We also allowed for
higher infectiousness in treatment-experienced
compared with treatment-naive tuberculosis cases, as
suggested by local tuberculosis prevalence surveys that
reported that treatment-experienced individuals with
tuberculosis were more likely to report cough and more
likely to be smear-positive than treatment-naive
individuals without the disease.” Among individuals
with incomplete tuberculosis treatment, we assumed
that up to 20% remained infectious, consistent with
findings from a retrospective cohort study done in the
study setting.” Table 1 shows a list of key model
parameters describing differences in treatment-naive
and treatment-experienced individuals.

The HIV component of the model accounts for HIV
infection, progression toastate ofimmunocompromised
HIV infection, and antiretroviral treatment (ART;
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Figure 1: Structure of the mathematical model

Dashed arrows are modelled interventions, 2°IPT=secondary isoniazid preventive therapy. TACF=targeted active case finding. Mortality rates are not shown. The

childhood subcomponent and corresponding transitions are shown in the appendix.

figure 1). We also implemented a model subcomponent
for children aged 0-14 years. Additional model details
including the subcomponent for children are described
in the appendix.

Model initialisation and parameter estimation
approach

We calibrated the model to data between 2002, and 2008;
model simulations were initiated in 1992 to allow for a
10-year burn-in period. We specified an initial
population size of 32889 (25903 adults and
10427 children aged 0-14 years), informed by local
census data and projections of population growth. The
values of many parameters in tuberculosis and HIV
co-epidemics models are not known with certainty.
Therefore, we adopted a Bayesian calibration approach”
to identify parameter sets that resulted in simulated
trajectories with good fit to available epidemiological
data (table 2). To implement this approach, we specified
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previous distributions for each parameter. Multiple
parameters sets were randomly and independently
selected from these distributions. We used each of
these parameter sets to simulate epidemic trajectories,
and measured the goodness-of-fit for each of these
simulations against several calibration targets. These
calibration targets were operationalised as the
likelihood of recording the epidemiological data
conditional on the simulated values. The appendix
provides additional details about the likelihood function
used and the methods to characterise the posterior
parameter distributions. Figure 2 displays the fit of
simulated trajectories against the calibration targets
listed in table 2.

Interventions

We used the model to project the effect of two targeted
interventions: targeted active tuberculosis case finding
and secondary isoniazid preventive therapy. For
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Uniform prior
distribution

Source

Relative infectiousness of treatment-experienced vs
treatment-naive adults with active tuberculosis (ratio)

1.000to 1-500

During latent tuberculosis infection (tuberculosis 0-370t0 0-870

treatment-naive)
0-370to0 0-870
0-370to0 0-870

After complete tuberculosis treatment
After incomplete tuberculosis treatment
Annual rate of tuberculosis reactivation (HIV-negative adults)

Latent infection

Previously treated active tuberculosis

Treatment-naive, HIV-negative adults and children 0-083 to 3-000

0-083 to 2-000
0-083 to 2-000

Treatment-experienced, HIV-negative adults
HIV-positive adults

Percentage tuberculosis treatment completion

Treatment-naive adults Time-varying
Adults after previous complete tuberculosis treatment Time-varying
Adults after previous incomplete tuberculosis treatment ~ Time-varying
Probability of persistent active tuberculosis following 010 0-200

incomplete tuberculosis treatment (adults, any HIV status)

Percentage reduction in susceptibility due to partial immunity (HIV-negative adults)

0-0003t0 0-0024  Menzies et al,” Dye and Williams,” Dye and Espinal,” Cohen et al,*

0-0003 to 0-048

Baseline time (years) between onset of tuberculosis and detection (adults, independent of tuberculosis treatment history)

Assumption, based on findings from Marx et al'*®

Menzies et al,* Dye and Williams,” Dye and Espinal,”* Cohen et al,* Dowdy
and Chaisson®

Assumption

Assumption

Dowdy and Chaisson®

Assumption

Menzies et al, Dye and Williams,” Dye and Espinal,” Cohen et al,**
Dowdy and Chaisson®

Assumption

Assumption

Estimated from tuberculosis treatment register database used in Marx et al.*

Based on data from Marx et al*®

Table 1: Selected model parameters describing differences between treatment-experienced and treatment-naive individuals

treatment (2002-08)

Value 95% Source
confidence
interval
Total population (2002)
Adults 25903 City of Cape Town*
Children 10427 City of Cape Town
Percentage tuberculosis treatment-experienced adults (2002) 970 8.70-10-90  den Boon et al*®
Percentage tuberculosis prevalence, treatment-naive adults (2002) 0-51 0-26-0-76  denBoonetal*®
Percentage tuberculosis prevalence, treatment-experienced adults 2-99 1-14-4-77  denBoonetal®
(2002)
Percentage HIV prevalence, adults (2002) 520 Assumption, based on data from Western Cape

Number of children who started tuberculosis treatment (2002-08)  Time-varying

Number of treatment-naive adults who started tuberculosis Time-varying Tuberculosis treatment register database used in Marx et al.**
treatment (2002-08)
Number of treatment-experienced adults who started tuberculosis ~ Time-varying Tuberculosis treatment register database used in Marx et al.**

*Unpublished end-of-year estimates (community level) from the 2001 South Africa population census provided by the City of Cape Town.

Department of Health®

Tuberculosis treatment register database used in Marx et al.*

Table 2: Overview of calibration targets and data sources

targeted active case finding we assumed that all adults
who previously completed tuberculosis treatment were
re-evaluated for active tuberculosis on average once per
year and referred for tuberculosis treatment. We
modelled targeted active case finding by increasing the
rate of diagnosis, resulting in reductions in the average
diagnostic delay, and the expected period of
infectiousness (figure 1).

For secondary isoniazid preventive therapy, in the
first year of intervention, we modelled a catch-up

treatment campaign that reached 90% of individuals
with previously completed tuberculosis treatment in
the population. Subsequent to this catch-up period, we
assumed that secondary isoniazid preventive therapy
was offered to individuals after the completion of a full
course of tuberculosis treatment and that an average of
90% of individuals completing treatment were enrolled.
Secondary isoniazid preventive therapy reduces the rate
of tuberculosis reactivation and the risk of progression
to disease following re-infection. We allowed the
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Figure 2: Calibration targets and fitted model trajectories

Green dots denote the nine calibration targets, with error bars representing 95% Cls where applicable; grey lines represent 100 simulated trajectories produced by the
calibrated model; the simulated trajectories that fell outside the feasible regions (shaded areas) were considered extremely unlikely and were eliminated by the
calibration method. The interval between the dashed vertical lines shows the model calibration period (2002-08).

preventive effects of secondary isoniazid preventive
therapy to vary between 45% and 85%, a range informed
by two previous studies.”®*' We assumed that the relative
effect of secondary isoniazid preventive therapy was
independent of HIV infection, but the absolute effect
associated with this intervention remains greater for
those with HIV in view of their higher reactivation rate
and risk of progression.

Secondary isoniazid preventive therapy was intended
as a lifelong intervention but we assumed that, on
average, 15% of people currently on secondary isoniazid
preventive therapy drop out every year (resulting in an
expected duration of 6-6 years of secondary isoniazid
preventive therapy), and that the protective effect of
secondary isoniazid preventive therapy does not extend
beyond the cessation of treatment.”

Model outcomes and data analysis

We projected trends in tuberculosis incidence, pre-
valence, and mortality for 10 consecutive years—ie,
2016-25, under the baseline scenario and under
two interventions scenarios: targeted active case finding
alone and targeted active case finding plus secondary
isoniazid preventive therapy. The effect of these
interventions was defined as the cumulative number of
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tuberculosis cases and deaths averted during the 10-year
period relative to the baseline scenario. The results are
presented as the mean and 95% uncertainty intervals
(the 2-5th and 97-5th percentiles of outcome values
derived from 1000 simulated trajectories).

Sensitivity and scenario analyses

To assess how sensitive the projected effect of targeted
active case finding and secondary isoniazid preventive
therapy was to input parameters of our model, we
calculated partial rank correlation coefficients.*** The
coefficients measure the correlation between an input
parameter and the projected model outcome (number
of incident tuberculosis cases averted) while adjusting
for other parameters in the model. Additionally, we did
the following types of scenario analyses: the projected
effect of both targeted interventions under different
periodicities of targeted active case finding (every 6 vs
12 and 24 months on average), different probabilities
of secondary isoniazid preventive therapy enrolment
(none vs 50%, 75%, and 90%), and different annual
rates of drop-out from secondary isoniazid preventive
therapy (5% wvs 15% and 25%) were assessed.
Furthermore, to provide additional insight on how well
these targeted interventions might perform in
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Figure 3: Tuberculosis incidence among treatment-naive and
treatment-experienced adults between 2003 and 2025, projected under
the baseline scenario

Mean estimates (bold red line) represent the mean prediction at any given year.
The 100 trajectories shown represent a random subset of the 1000 trajectories
selected for analysis.

communities with lower transmission rates, we report
results for a hypothetical scenario where we reduced
the force of infection by 50% relative to that in our
study setting.

Role of the funding source

The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report. The corresponding author had
full access to all of the data and the final responsibility
to submit for publication.

Results
We estimated that in 2016, 13% (95% uncertainty
interval [UI] 11-16) of all adults in this population had
previously been treated for active tuberculosis. The
estimated prevalence of untreated tuberculosis was
2:2% (95% UI 0-9-3-8) in treatment-experienced
adults, about 5-5 times higher than that in treatment-
naive adults (0-4%, 0-1-0-8).

The identified parameter posterior distributions sug-
gested that HIV uninfected treatment-experienced
people were, on average, 1-6 times (95% UI 0-4-3-4)

more susceptible to re-infection than were HIV
uninfected people who were latently infected and
tuberculosis treatment-naive. HIV uninfected adults
who had completed tuberculosis treatment experienced,
on average, a 35 times (95% UI 3-2-104-0) higher rate
of tuberculosis reactivation than people who were
latently infected and tuberculosis treatment-naive. The
appendix provides posterior distributions of key
parameters of the natural history of tuberculosis for
treatment-experienced and treatment-naive individuals.

In the absence of targeted interventions, we projected
4457 (95% UI 2741-6723) incident tuberculosis cases
and 623 (328-1031) tuberculosis-associated deaths
between 2016 and 2025. In this period, 1423 (95% UI
670-22311) incident tuberculosis cases will occur
among adults who had completed a prior episode of
treatment, representing 32% (20-39) of all incident
cases.

Figure 3 shows trends in tuberculosis incidence
projected for treatment-naive and treatment-
experienced adults over a 25-year period. Among
treatment-naive adults, mean tuberculosis incidence
per 100000 people was 903 (95% UI 541-1147)
in 2016 and was projected to decrease to 787 (287-1020)
by 2025 (figure 3). Mean tuberculosis incidence among
treatment-experienced adults was 4926 (95% UI
2949-6857) per 100 000 people in 2016, 5- 5-times higher
than among treatment-naive adults, and is expected to
fall to 4353 (1874-5917) by 2025. The projected average
annual decrease in tuberculosis incidence between
2016 and 2025 was 1-3% in treatment-naive and 1-2% in
treatment-experienced adults.

With regards to the epidemiological effect of the
interventions, our model suggests that annual targeted
active case finding among individuals who had
completed tuberculosis treatment would reduce the
average duration of infectious disease in this group
from 9-7 months (95% UI 2-3-17-5) to 5-0 months
(1-9-7-1).

Figure 4 shows trends in tuberculosis incidence,
prevalence, and mortality under the baseline scenario,
under targeted active case finding alone, and under
combined targeted active case finding and secondary
isoniazid preventive therapy. The average annual
decline in tuberculosis incidence between 2016 and 2025
relative to 2015 was 1-6% at baseline (no intervention),
3-0% under annual targeted active case finding, and
5-4% under annual targeted active case finding in
combination with secondary isoniazid preventive
therapy. Targeted active case finding alone would avert
a total of 621 (95% UI 13-1355) incident tuberculosis
cases between 2016 and 2025, 14% (0-4-28-0) of all
incident tuberculosis cases projected under the baseline
scenario. Over the same time period, targeted active
case finding would avert a total of 138 (95% UI 13-296)
tuberculosis deaths, 21% (2-5-39-0) of all tuberculosis
deaths projected under the baseline scenario. The
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Figure 4: Projected epidemiological effect of interventions targeted to individuals with a history of previous complete tuberculosis treatment in a

high-incidence setting in suburban Cape Town, 2016-2025

implementation of targeted active case finding in
combination with secondary isoniazid preventive
therapy would avert 1805 (95% UI 565-2952) incident
tuberculosis cases between 2016 and 2025, 40% (21-56)
of all incident tuberculosis cases projected under the
baseline scenario. The combined targeted intervention
would avert a total of 267 (95% UI 70-543) tuberculosis
deaths, 41% (16-55) of all tuberculosis deaths projected
under the baseline scenario.

Findings of sensitivity analysis showed that the
projected effect of targeted active case finding and
secondary isoniazid preventive therapy was most sensitive
to the tuberculosis reactivation rate after completion of
tuberculosis treatment, the time between tuberculosis
disease onset and detection in the target group, the
natural mortality rate in treatment-experienced relative to
treatment-naive adults, and the efficacy of secondary
isoniazid preventive therapy, among other parameters
(appendix p 18). Lower periodicity of targeted active case
finding (every 24 vs 12 months) and lower uptake of
secondary isoniazid preventive therapy, as well as higher
drop-out from secondary isoniazid preventive therapy,
resulted in reduced effect (appendix p 19). In a
hypothetical scenario in which we reduced the force of
infection to 50% of the baseline value, we noted that
annual targeted active case finding in combination
with secondary isoniazid preventive therapy averted
34% (95% UI 16-54) of 2811 (1742-4503) incident
tuberculosis cases and 36% (14-56) of 444 (231-760)
tuberculosis deaths estimated at baseline (appendix p 19).

Discussion

In this study, we used a calibrated population-based
mathematical model to project the effect of two types of
interventions targeted to previously treated people in a
tuberculosis high-incidence setting. Our data suggest that,
if targeted active case finding and secondary isoniazid
preventive therapy were introduced to complement
existing tuberculosis control efforts in this setting, the
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burden of tuberculosis could be substantially reduced.
Our study supports the idea that efforts for prevention and
prompt detection of recurrent tuberculosis®* could offer
novel opportunities for tuberculosis control in settings of
high tuberculosis incidence.

We propose these targeted control interventions during
a time when untargeted efforts, such as population-wide
enhanced case finding and household-based screening®
and mass isoniazid preventive therapy’ have yielded
insufficient evidence of effect, and where novel
approaches are urgently needed to reduce the burden of
tuberculosis in communities most affected by the
disease. Targeting control efforts to groups at high risk
of tuberculosis could enable health services to make
more efficient use of available resources. In many
high tuberculosis prevalence settings, previously treated
people can be easily identified and experience an elevated
risk of tuberculosis, " therefore they might be an attractive
target for focused interventions.

We project that within 10 years in this setting, a
combination of targeted active case finding and
secondary isoniazid preventive therapy could avert
more than a third of incident tuberculosis cases and
tuberculosis deaths. Targeted active case finding alone
could have a notable effect on tuberculosis prevalence
and mortality, but is expected to have a smaller effect on
incidence; our simulations suggest that a marked effect
of targeted active case finding is achieved when it can
be coupled with secondary isoniazid preventive therapy.
Our projections show that much of the effect of targeted
active case finding and secondary isoniazid preventive
therapy accrues in the first few years after their
implementation. The diminishing effect over time
suggests a saturation effect, which might imply that
such targeted interventions could be used within an
adaptive control strategy.”

Our study constitutes a first step towards better
understanding the effect of interventions targeted to
previously treated people in high-incidence settings.
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However, several limitations must be noted. We applied
our model to a specific setting with a high tuberculosis
incidence and where high rates of recurrent tuberculosis
due to relapse and re-infection had been previously
reported.* We note that the effect of interventions
targeted at previously treated people, which we project
for this setting, might not be easily generalised to other
high-incidence settings for several reasons. High rates of
recurrent tuberculosis have been reported from several
other high-incidence settings.®™* However, the
population-level effect of targeted interventions will
also depend on the size of the target group and
their contribution to tuberculosis transmission in
the population. In this particular setting, persistently
high rates of incident tuberculosis have generated a large
subgroup of people who had previously been treated for
tuberculosis (about 10% of all adults) and who constitute
a substantial proportion of the prevalent tuberculosis
burden in the population (about 30% of prevalent cases).

Although our projections are consistent with the
epidemiology of tuberculosis in other high-incidence
communities in South Africa,** we expect interventions
among previously treated people to be less effective in
settings with lower tuberculosis incidence, and where a
smaller proportion of the tuberculosis burden is
attributable to former tuberculosis patients. For example,
previously treated people accounted for 4-1% of the adult
population and for 13% of prevalent tuberculosis cases in
Lusaka, Zambia,® and for 1-5% and 15%, respectively, in
Nigeria’—two settings with lower tuberculosis incidence
than our study setting. Nonetheless, given that new
approaches for tuberculosis control are most needed in
areas where tuberculosis incidence has been persistently
high, our results suggest that efforts to both prevent and
rapidly detect and treat recurrent disease will produce
important health benefits. In our scenario analysis,
for which we lowered the force of infection by 50%, we
noted that targeted active case finding in combination with
secondary isoniazid preventive therapy reduced the
expected number of incident tuberculosis cases and deaths
to a lesser extent, but still averted a third of incident cases.

Differences in the prevalence of HIV in a population
might influence the effect of interventions targeted to
previously treated people in several ways. Communities
with higher HIV prevalence might experience more
recurrent tuberculosis given the elevated risk of re-
infection with tuberculosis among HIV-infected
individuals,”® and thus benefit more from similar
interventions. Survival after a first tuberculosis episode
might be reduced among those not on ART; those on
ART may be subject to more regular clinical follow-up
that would limit the benefit of additional case finding
interventions in this group.

The population-level effect of targeted active case finding
and secondary isoniazid preventive therapy will be
dependent upon existing patterns of passive health-care
seeking behaviour. In settings where there are longer

delays to diagnosis, additional interventions to more
rapidly identify and treat recurrent cases would be more
effectual, whereas in areas where individuals self-present
quickly after onset of symptoms, we would expect more
modest returns from investment in combined targeted
active case finding and secondary isoniazid preventive
therapy interventions. This is consistent with our
sensitivity analysis, which showed that the time to passive
tuberculosis detection among treatment-experienced
adults correlated with the projected effect.

Uncertainty around parameters of the natural history
of tuberculosis, particularly those determining re-
infection, disease progression, and mortality among
previously treated individuals, leads to substantial
uncertainty in the modelled outcomes. To avoid bias
towards higher estimates of effect, we used conservative
prior ranges of parameters for treatment-experienced
adults, similar to those among treatment-naive adults.
Specifically, we did not enforce higher susceptibility,
lower partial immunity, or higher disease progression
risk among those with a history of previous tuberculosis,
but did allow posterior parameter values derived from
calibration to vary by treatment history. While posterior
distributions of our model are consistent with
treatment-experienced people being more likely to
become productively re-infected than treatment-naive
people, we did not explicitly model differential risk of
exposure, which could also be a mechanism driving
increased risk of recurrent disease.”

Our study is further limited by uncertainty around
the efficacy of secondary isoniazid preventive therapy
towards preventing recurrent tuberculosis. As shown
in our sensitivity analysis, higher effects of secondary
isoniazid preventive therapy would result in higher
effect at the population level. Only two studies—a
randomised trial® and a cohort study’—have assessed
the effect of preventive therapy on recurrent
tuberculosis. Both were limited in size and focused on
people living with HIV. More available data from the
field would improve our projections.

We used a simple mathematical model that does not
enable us to explore specific intervention designs or
consider many practical issues related to implementation.
In particular, in our main analysis we assumed that
interventions could be aggressively rolled out in these
suburban settings—ie, that individuals with previous
treatment could be effectively identified, enrolled, and
screened for tuberculosis on average every 12 months,
that 90% could be enrolled in secondary isoniazid
preventive therapy upon completing treatment, and
15% would drop out from secondary isoniazid preventive
therapy every year. Although we believe high coverage
levels of the interventions could be achieved in this
relatively small suburban setting, the effect of these
interventions would clearly be lower if interventions
were less vigorously applied or if some individuals were
not reachable by the intervention.

www.thelancet.com/lancetgh Vol 6 April 2018
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In conclusion, our study provides impetus for further
research to better understand the individual and
population-level benefits of tuberculosis control
interventions targeted at previously treated people.
Studies and trials of the feasibility, safety, effect, and
population-level effect of targeted active case finding and
secondary isoniazid preventive therapy in previously
treated people in high-incidence settings would be
particularly useful. Other interventions to prevent
recurrent tuberculosis such as adjuvant immunotherapy
during tuberculosis treatment,” extending the duration of
tuberculosis treatment for certain high-risk patients,* or
post-treatment vaccination might be considered in the
future. Further mathematical modelling, in which
detailed costs of interventions are also included, would be
useful for policy makers as they could establish whether
such interventions are cost-effective and how investment
in these approaches may compare with alternatives.
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S1. Study setting

Our study focuses on two adjacent suburban communities with a high tuberculosis (TB) burden in
Cape Town, South Africa, covering an area of 3.4 km? and with a total population of 39,930
people in 2011. The internationally-endorsed TB control strategy (DOTS) was introduced in these
communities in 1996. In the first year of the program, the rate of notified TB (all forms) was 1,340
cases per 100,000 residents.! Treatment success rates were initially low but increased rapidly and
exceeded 80% amongst smear-positive TB cases in 2003.2 However, persistently high annual rates
of infection (estimated 3:7% in 1999 and 4-1% in 2005%) suggest that control measures, while
improving individual outcomes, did not reduce transmission.® High local rates of recurrent TB
after previous successful treatment*® and after loss to follow-up from treatment’ have also been
reported; a lung health survey conducted in 2001 identified a high prevalence of undetected TB
among previously treated residents.?

S2.  Model structure

Childhood subcomponent: At birth, individuals enter the childhood subcomponent of the TB
model (Figure S1) in the susceptible state, where they face a time-varying risk of infection,
conditional on the force of infection which is dependent on the total number of infectious cases
(adults and children) at time t. Upon primary infection, children either progress rapidly to
infectious TB or reach a latently infected (non-infectious) state. Children may remain in the latent
state, or their infection may reactivate and progress to infectious TB. They may also become
reinfected and either rapidly progress to infectious disease or remain in the latent state. Upon
infectious disease, children may move into a recovered state after being found and treated.

At any state, children may leave the model subcomponent into the main (adult) component at rates
reflecting their age progression beyond 14 years (Figure S1). Specifically, children transit from
the susceptible state into the adult treatment-naive susceptible state, from the latently infected state
into the adult treatment-naive latently infected state, and from the infectious state into the adult
treatment-naive infectious state. We assume that treatment of childhood TB is always complete,
thus, children in the recovered state move into the adult latently infected after complete treatment
state.

Main component (adults): Treatment-naive susceptible adults transition from the susceptible state
to the latently infected state or directly into the infectious TB state after primary infection (Figure
1, main manuscript). Latently infected treatment-naive adults may experience reactivation disease
and transition into the infectious TB state. If reinfected while in the latently infected state, they
may progress to infectious disease or remain latently infected. Treatment-naive infectious adults
may be identified and move into either of the two treatment compartments (treatment that is
completed, treatment that is incomplete). The transition into these two treatment states is
determined by the case finding rate and the proportion of complete treatment among new (i.e.
previously treatment-naive) TB cases estimated for the study setting. Individuals in the incomplete
treatment state move into a treatment-experienced latently infected state or, upon continuous
infectious TB, directly into the infectious TB state. From latent infection, they may progress to
infectious TB either via disease reactivation or following reinfection. Upon complete treatment,



all adults transition to a latently infected state (i.e. consistent with many TB models, we assume
that sterilizing cure is not achieved). We introduced two different states of latent infection for those
individuals completing treatment. This allows us to distinguish whether individuals were enrolled
in 2°IPT. Latently infected adults after complete treatment may progress to infectious disease
either via reactivation or following reinfection. Similar to treatment-naive infectious cases, cases
occurring after either incomplete or complete treatment move back into the two treatment states at
rates determined by case finding rates and the proportion of complete treatment estimated for the
study setting. We implemented an active case finding rate, incremental to the passive case
detection rate, to simulate TACF among adults who previously completed TB treatment.
Individuals may exit the model due to death from any state, with additional excess mortality rates
due to TB disease and HIV infection implemented in out model.

Model subdivisions for HIV co-infection and antiretroviral treatment: Upon HIV infection
(Figure 1, main manuscript), HIV-negative adults transit into a non-immunocompromised HIV
infected state, and upon progression, into an immunocompromised subdivision. Upon initiation of
antiretroviral treatment (ART), individuals in either of the two prior HIV-positive subdivisions
may transit into a fourth subdivision. Once initiated on ART, individuals were assumed to stay on
ART. We did not model HIV in children.

S3.  Model parameterization

Parameter values and ranges used in the model along with their sources are provided in the
subsequent sections and Tables S1-S14. Rates shown are per year unless otherwise specified.

S3.1. Demographics

Estimates for demographic parameters are based on data from the Tygerberg sub-district of Cape
Town in which the study setting is situated. We assumed a constant birth rate throughout the study
period which was estimated by dividing the number of life births in the study setting reported for
the year 2003° by the projected population in 2003 (Table S1). Estimates of the natural death rates
among children 0-14 years of age were derived from unpublished mortality data (for 2011)
provided by the City of Cape Town Directorate of Health (Table S1). In the absence of published
data, we derived an estimate of the natural mortality rate among adults through calibration,
allowing for a 1-:0% annual population growth, consistent with unpublished census data for the
study setting (Table S1). We assumed that the rate of natural death among treatment-experienced
adults was between equal and 5-times higher compared to treatment-naive adults. This range takes
into account the possibility that mortality among former TB patients may be higher!'%-!? due to a
variety of factors such as lung impairment and chronic pulmonary disease'® and an elevated risk
of death from lung cancer!* compared to individuals without a history of TB.

We assumed that on average, a child would be in contact with 40 other children and 9 adults per
day, and an adult would be in contact with 15 adults and 9 children per day.'>



Table S1: Model Parameters — Demographics

Measure Value [Interval] Source

Annual per capita birth rate 0-0229 ?

Annual population growth 1:0% estimated from unpublished census
data, City of Cape Town

Annual natural death rate among children (<15 years) 0-0017 estimated from unpublished census

data, City of Cape Town

Annual natural death rate among adults (>15 years)

[0-0086-0-0096]

Experiments with the model

Natural death rate ratio, TB treatment-experienced
adults to treatment-naive adults

[1-6]

assumption

S3.2. Natural history of TB

Estimates for transition rates between TB-related states were derived from the published literature,
where available (Tables S2-S5). In accordance with prior modeling studies, we considered that
distant prior (latent) infection would lead to partial immunity reducing the risk of becoming
reinfected (Table S4). Parameters for HIV-infected adults take into account that HIV alters the
natural history of TB. Specifically, HIV-infected individuals are subject to a higher probability of
fast progression to active TB following infection'®!” (Table S2) and a higher probability of

reactivation of latent infection'® (Table S3).

We assumed that children were less likely to transmit TB by the ratio 0-12 [0-034-0-305]
(compared to treatment-naive adults) that was based on the probability of smear-positive TB

among children and adults estimated in a recent meta-analysis.!”

Table S2: Model Parameters - Probability of Fast Progression to Active TB Upon Primary Infection

Subgroup

Value [Interval]

Source

Adults, susceptible/treatment-naive/HIV-

0-115 [0-09-0-14]

20-22

Adults, susceptible/treatment-naive/HIV+/non-
immunocompromised

0-33 [0-18-0-51]

20-22

Adults, susceptible/treatment-naive/HIV+/
immunocompromised

0-805 [0-75-0-91]

20-22

Children, susceptible

0-118 [0-09-0-14]

estimated from 2

Table S3: Model Parameters - Rate of Reactivation of latent TB infection

Subgroup Value [Interval] Source

. . 0-001 21222425
Adults, latently infected/treatment-naive/HIV- [0-0003-0-0024]
Adults, latently infected/treatment-naive/HIV+/non- 0-003 21220425
immunocompromised [0-001-0-006]
Adults, latently infected/treatment-naive/HIV+/ 0-1275 21222425
immunocompromised [0-080-0-200]
Children, latently infected 0-001 assumption

[0-0003-0-0024]




Table S4: Model Parameters — Percent Reduction in Susceptibility due to Partial Immunity afforded by Prior
Infection (treatment-naive)

Subgroup Value [Interval] Source
Adults, latently infected/HIV- 0-65 [0-37-0-87] 22,24,26-28
Adults, latently infected/HIV-Hnon- 0-45 [0-23-0-68] 22242628
immunocompromised

Adults, latently infected/HIV+/ immunocompromised ~ 0-25 [0-14-0-39] 22,24,26-28
Children, latently infected 0-65 [0-37-0-87] assumption

Table S5: Model Parameters — Rate of Natural Recovery among Undetected Active TB Cases

Subgroup Value [Interval] Source
Adults, infectious/treatment-naive/HIV- 0-2[0-15-0-25] 21,22,2629
. . e S non.

Adults, 1nfect10us{treatment naive/HIV+/non 0-1 [0-06-0-16] 21222629
immunocompromised

Adults, infectious/treatment-naive/HIV+/ 0 21222629
immunocompromised

Children, infectious 0-2 [0-15-0-25] assumption

S3.3. Natural history of TB: Characteristics of treatment-experienced adults

The model allows for specific characteristics in the natural history of TB among individuals
previously treated for the disease. In the absence of published estimates for many of these
parameters, we specified prior parameter ranges and derived posterior parameter values through
calibration (see below).

We assumed that TB treatment-experienced people were equally likely to be exposed to an
individual with infectious TB in the community compared with treatment-naive people. However,
we allowed treatment-experienced adults to differ from treatment-naive, latently infected adults in
terms of their risk of becoming reinfected upon exposure. This was achieved through differential
parameters for partial immunity towards reinfection among treatment-experienced and treatment-
naive people derived through calibration (same prior ranges; Table S6, see Table S4 for
comparison). Rates of reactivation TB after complete and incomplete treatment were derived from
calibration. To account for the possibility of higher reactivation rates after prior treatment for
active TB, we specified prior parameter ranges for reactivation rates (Table S7) with the lower
boundary being equal and the upper boundary 20-times higher than that for reactivation of distant
prior latent infection (compare Table S3).

Based on findings from prevalence surveys that treatment-experienced cases of TB were more
likely to be coughing and to be smear-positive®?, we assumed that treatment-experienced TB cases
were equal to 1-5-times more likely to transmit TB compared to treatment-naive TB cases in terms
of their potential to transmit TB.

Individuals with incomplete treatment may continue to suffer from infectious disease. Based on
data from a retrospective cohort study conducted previously in the study setting’, we assumed that
between 0 and 20% of those who were lost to follow-up during treatment remained infectious and
thus moved directly into the compartment of infectious TB (Table S8). We assumed that recurrent
cases of TB after previous complete or incomplete treatment were equally likely to transmit
compared with cases of a first episode of TB.



Table S6: Model Parameters —Percent Reduction in Susceptibility due to Partial immunity after (previously
treated) active TB

Subgroup Value [Interval] Source
Adults, latently infected/prior complete or incomplete - 22242628
treatment/HIV- [0-37-0-87]

Adults, latently infected/ prior complete or

: ) - 22242628
mcomplete treatm.ent/HIV-i-/non [0-23-0-68]

immunocompromised

Adults, latently infected/ prior complete or - 22242628
incomplete treatment/HIV+/ immunocompromised [0-14-0-39]

Table S7: Model Parameters — Rate of Reactivation of active TB after treatment

Subgroup Value [Interval] Source
Adults, prior complete treatment/HIV- [0- 000022)1. 048] see: S3.2
Adults, prior incomplete treatment/HIV- 0-001 see: S3.2
’ [0-0003-0-048]
Adults, prior complete treatment /HIV+/ 0-003 )
non-immunocompromised [0-001-0-12] see: 83.2
Adults, prior incomplete treatment /HIV+/non- 0-003 )
immunocompromised [0-001-0-12] see: 83.2
Adults, prior complete treatment/HIV+/ 0-1275 )
immunocompromised [0-080-4-00] see: 83.2
Adults, prior incomplete treatment /HIV+/ 0-1275 )
immunocompromised [0-080-4-00] see: 83.2

Table S8: Model Parameters — Probability of Persistent Active TB Following Incomplete Treatment

Subgroup Value [Interval] Source

Adults, prior incomplete treatment/any HI'V-status [0-0-20] based on data from ’

S3.4. TB case detection and treatment

Parameters for TB case detection rates were derived from calibration. We allowed for shorter times
to detection assuming that people who had experienced TB treatment may seek care more promptly
than those without previous TB treatment. We also assumed shorter times to detection for HIV-
infected people (Table S9). The prior ranges used were informed by estimates of infectious disease
duration before detection from previous studies in South Africa’! and Zimbabwe?2.

We assumed that TB cases on treatment are non-infectious, i.e. they do not contribute to
transmission. The duration of complete treatment among new and re-treatment cases was estimated
from treatment register data (Table S10). We assumed that treatment is either complete or
incomplete. Proportions of complete treatment among treatment-naive and treatment-experienced
people between 1996 and 2008 were estimated from the TB register database (Table S11). For the
years following 2008, we randomly sampled treatment completion probabilities from a uniformly
distributed range of probabilities specified by the 1996 to 2008 data.



Table S9: Model Parameters — Baseline time between disease onset and detection (years)

Subgroup Value [Interval] Source
Adults, infectious/treatment-naive/HI'V- [0.083-3] assumption
Adults, infectious/ or prior complete or incomplete [0.083-2] assumption
treatment/HIV-

Adults, infectious/prior treatment-naive or prior [0.083-2] assumption
complete or incomplete treatment/HIV+

Children, infectious [0.083-3] assumption

Table S10: Model Parameters — Duration of treatment (years)

Subgroup Value [Interval] Source
Adults, complete treatment 0-50 (0-47-0-57) TB program data
Adults, incomplete treatment 0-42 (0-31-0-52) TB program data
Table S11: Probability of complete treatment
Year
Subgroup Source
2002 2003 2004 2005 2006 2007 2008
Adults. treatment-naive 91 98 97 94 97 99 98 TB program
’ (87-94) (95-99) (94-98) (90-96) (94-98) (96-99) (96-99) data
Adults, prior complete 92 92 92 94 88 94 89 TB program
treatment (82-97) (83-96) (85-96) (86-97) (79-94) (87-98) (80-94) data
Adults, prior incomplete 60 84 82 65 83 55 77 TB program

treatment

(37-79) (60-95) (56-94) (40-84) (58-95) (33-75) (46-93) data

S3.5. TB-associated (excess) mortality

We considered excess mortality rates (incremental to natural death rates) for two different groups,
those with untreated active (infectious) TB (Table S12) and those on TB treatment (Table S13).
We assumed that the excess mortality rate among HIV-infected non-immunocompromised adults
and those HIV-infected on ART was similar to that among HIV-uninfected individuals. We further
assumed that the excess mortality rate among untreated children was similar to that among HIV
uninfected adults, and that children would not die from TB while on treatment (Table S13).



Table S12: Model Parameters — Rate of TB-associated (excess) mortality rate, untreated TB

Subgroup Value [Interval] Source
Adults, infectious/prior treatment-naive or prior ) ) ) 2122
complete or incomplete treatment/HIV- 0-28 [0-20-0-37]

Adults, infectious/prior treatment-naive or prior

complete or incomplete treatment/HIV+/non- 0-28 [0-20-0-37] assumption, see S3.5
immunocompromised

Adults, infectious/prior treatment-naive or prior

complete or incomplete treatment/HIV+/ 0-80[0-47-1-27] 223334
immunocompromised

Adults, infectious/prior treatment-naive or prior .

complete or incomrr))lete treatment/HIV+/AIIiT 0-28 [0-20-0-37] assumption, see 83.5
Children, infectious 0-28 [0-20-0-37] assumption, see S3.5

Table S13: Model Parameters — Rate of TB-associated (excess) mortality rate, on TB treatment

Subgroup Value [Interval] Source
Adults, infectious (any subcategory) [0- 02'7(3(5).607 0] estimated from TB program data
Children, infectious 0 assumption

S3.6. Natural history of HIV infection

Adults may be infected with HIV at any state in the model and move across the HIV subdivisions.
The rate of HIV transmission in the adult population was derived from calibration. Rates of
progression from non-immunocompromised to immunocompromised HIV and that of HIV-
associated excess mortality among non-immunocompromised people were estimated from data
published in the literature (Table S14). The distinction between non-immunocompromised and
immunocompromised HIV-infected adults was made on the basis of CD4 count cut-off level of
<350/mm?. HIV-associated excess mortality among immunocompromised people was calculated
from estimates of survival time among HIV-infected people not on ART, assuming that 75% of
these died from HIV-related causes other than TB. It was assumed that all children in the study
setting were and remained HIV uninfected.



Table S14: Model Parameters — HIV-progression, HIV-associated mortality and effect of ART

Measure Value [Interval] Source
Annual rate of progression to immunocompromised 0-142 35

HIV from non-immunocompromised HIV [0-135-0-149]

Survival time of HIV-infected people not on ART 10-2 16
(years) [9-7-10-5]

Annual non-immunocompromised HIV-associated 0-008 223741
excess mortality rate [0-:005-0-012]

Annual immunocompromised HIV-associated excess 0-068 calculated from estimated survival
mortality rate [0-062-0-074] time, see above
Annual HIV-associated excess mortality rate while 0-008 223741

on ART [0-005-0-012]

Effectiveness of ART in reversing effect of HIV on

TB natural history (compared to the HIV+/non- 0-69 [0-47-0-81] 42

immunocompromised state, excluding mortality)

S3.7. Initiation of antiretroviral treatment among HIV-infected adults

Assumptions were made to consider ART initiation among HIV-infected people in the study
setting.

ART among immunocompromised adults not on TB treatment. We assumed a (historical) rate of
ART initiation among immunocompromised people of 0-1 per year in 2004, the year of ART roll-
out in Cape Town, and a linear increase of this rate to 0-3 per year in 2016, after which the rate
remains constant.

ART among non-immunocompromised adults not on TB treatment. Considering the possibility that
ART is also offered to HIV-infected people above a CD4 count of 350mm?, we assumed a rate of
ART initiation among non-immunocompromised people of 0-02 per year in 2004, and a linear
increase of this rate in the following years to 0-1 per year in 2016, after which the rate remains
constant.

ART among immunocompromised and non-immunocompromised adults starting TB treatment. In
line with national TB guidelines for South Africa®, it was considered that ART is also initiated
when HIV-infected people start TB treatment. We assumed that ART was initiated among 10% of
HIV-infected individuals starting TB treatment. This proportions increases linearly to 30% until
2016 and remains constant at 30% in the following years. We assumed that ART was initiated at
the start of TB treatment but was not initiated at a later stage during the course of TB treatment.
Figure S2 shows the projected coverage of ART among treatment-naive and treatment-experienced
HIV-infected adults (not on TB treatment) over time derived from our model.

S4. Simulation approach

Let 4;.;» denote the rates at which members of age group i € {Ch, Ad} contact members of age
group i’ € {Ch, Ad} and let H= {Ix, It1, Itc} denote the set of adult compartments with infectious
status (TN = treatment-naive, T1 = prior incomplete treatment and TC = prior complete treatment).
We used N, (t) and Npy(t) for the number of children and adults at time t, and N, (t) for the
number of population members in model compartment h.
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We defined the force of infection for susceptible and latent children (2 € {Sch, Lcn}) at time t as:

Nycn(t)

N I(t)

Fr(t) = Bn (ACh<—Ch Na T 2n'et AcheAd N (t)) €y
and for susceptible and latent adults (2 € {St~, Ly, Ltc, L1i}) as:
I\Ch( ) z Ny (t)

Fp(t) = Apge Apge 2

n(t) ﬁh( AdeCh Ty Y Adead y -y |- (2)

In above equations, f3j, is the transmission parameter in compartments h € {Scn, Lcn, Stn, LN, Ltc,
L}, where S denotes susceptible, and L denotes latently infected. Based on existing survey data,!®
we assumed /1Ch<—Ch = 47, /1Ch<—Ad = /1Ad<—Ch = 3.1 and /1Ad<—Ad = 10.7.

To generate epidemic trajectories for this model, we use Monte Carlo simulation. Consider a
particular compartment Z in which members may depart due to J events. For example, members
of Ltn compartment may leave due to reactivation of latent infection, reinfection, or natural death
(i.e. ] = 4) (see Figure 1). If the number of individuals in compartment Z at time t is Z(t), then
the number of individuals that leave this compartment due to events j € {1,2,...,]} follows a
multinomial distribution with total counts of Z(t) and probabilities (pg, p1, P2, .- 0;), Where py =

1- ez§=1” 74 is the probability of not leaving the compartment Z during [t,t + At], and p; =
Kj eZ§=1 ujat

Z§=1ﬂjdt

j €{1,2,...,]}. Having obtained the realizations for the number of individuals who move from

one compartment to another during [t, t + At], we can then update the number of individuals in

each compartment at time t + At.

is the probability of leaving the compartment Z during [t, t + At] due to event

Model Initialization
In the absence of published estimates for the prevalence of HIV, active TB and treatment-
experienced individuals in the year 1992 (which marks the start of our simulation warm-up period),
we determined the initial size of model compartments based on the following:

1. Prevalence of immunocompromised and non-immunocompromised HIV is sampled, respectively,

from uniform distributions U [%3-5; %5-0]and U [%0-5; %1-0]. The prevalence of HIV-negative
was set to 1 minus the sum of the above two samples.

2. Prevalence of the treatment-experienced within each HIV subgroup was sampled from the uniform
distribution U [%6-0; %10-0]. The proportion of treatment-experienced with history of complete
or incomplete TB treatment was set to be equal.

3. Within the HIV-negative subgroup:

a. the prevalence of active TB was sampled from U [%0-4; %0-6] for treatment-naive
subgroup, and from U [%1-0; %10] for treatment-experienced subgroup;
b.  the prevalence of latent-TB among treatment-naive was sampled from U [%40; %60].

4. Within non-immunocompromised HIV+ subgroup,

a. the prevalence of active TB was sampled from U [%0-5; %2-0] for treatment-naive
subgroup and from U [%1-0; %10] for treatment-experienced subgroup;
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b. the prevalence of latent-TB among treatment-naive was sampled from U [%55; %65]
5. Within immunocompromised HIV+ subgroup,
a. the prevalence of active TB was sampled from U [%0-5; %2] for treatment-naive
subgroup and from U [%1-0; %10] for treatment-experienced subgroup;
b. the prevalence of latent-TB among treatment-naive was sampled from U [%55; %65]
6. Among children:
a.  Prevalence of active TB was sampled from U [%0-1; %1-0],
b. Prevalence of latent-TB was sampled from U [%30; %70],
c.  Proportion recovered was sampled from U [%2-0; %10],
d.  Proportion susceptible was set to 1 minus the sum of the three samples above.

The initial size of compartments representing “on TB treatment” was assumed to be zero at the
beginning of the simulation period.

S5. Model calibration

S5.1. Calibration data sources

We calibrated the model to data from three main sources. Population census data provided by the
City of Cape Town were used to obtain estimates of the size and age structure (i.e. children vs.
adults) of the population in the study setting. Data from a lung health prevalence survey conducted
in the study setting in 20028 were used to derive estimates of the proportion of adults with a history
of previous TB treatment and of the prevalence of TB among treatment-naive and treatment-
experienced adults in 2002. Estimates of the crude prevalence of TB by treatment history were
calculated from?® by dividing each, the number of treatment-naive and treatment-experienced adults
detected with culture-confirmed TB by the total number of adults in the survey sample multiplied
by each, the proportion of treatment-naive and treatment-experienced adults in the survey sample,
respectively. Finally, we accessed TB treatment data from an electronic TB treatment register
database that had been cleaned for duplicate entries and assessed for data consistency to obtain the
number of new and previously treated TB cases registered for treatment in the study setting. The
proportion of new and previously treated TB patients with complete TB treatment was estimated
among new and previously treated TB cases by dividing the number of TB cases with documented
treatment outcome success by the total number of patients with either treatment success or
treatment default (loss to follow-up; defined by treatment interruption for at least two consecutive
months) in that particular year (i.e. thereby excluding TB cases with treatment failure, transfer out
or unknown treatment outcome from the denominator).

To estimate parameters of HIV transmission in the community, we calibrated the model to an
estimated HIV prevalence of 5:2% (4:0%-6-0%) among adults living in the study setting in 2002,
assuming that HIV-prevalence was half of the 2002 antenatal survey estimate for the greater
Tygerberg East Sub-district.*

Calibration targets, data sources, and specified feasible ranges are shown in Tables S15-S17.
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Table S15: Calibration Targets for 2002

Target Value [Interval] Source

Number of adults in the study setting 25,903 City of Cape Town"

Number of children in the study setting 10,427 City of Cape Town"
. 9 : 7 8

Percentage treatment-experienced, all adults [8-7-10-9]

Percentage prevalent TB, treatment-naive 0-51 8

adults [0-26-0-76]

Percentage prevalent TB, treatment- 2:99 8

experienced adults [1-14-4-77]

* Unpublished end-of-year estimates (community level) from the 2001 South Africa population census provided by the City of Cape Town.

Table S16: Time-varying calibration targets (2002 -2008)

Value [Interval]

Target
Source
2002 2003 2004 2005 2006 2007 2008
Number of treatment-naive TB treatment
adults starting TB treatment 172 234 200 224 216 233210 register database °

Number of treatment-
experienced adults starting 105 119 130 109 130 126 137
TB treatment

TB treatment
register database °

quber of notified TB cases, 82 60 66 69 73 77 TB treatment )
children register database

Percentage HIV-positive, all ~ 5-2 -

adults [4-6] [4-6] [4:6] [4:6] [4:6] [4:6] [4:6] estimated from #*

Table S17: Specified feasible ranges for calibration targets

Target Feasible Range
Number of adults in the study setting 24,000 - 30,000
Number of children in the study setting 10,000 - 12,500
Percentage treatment-experienced, all adults 5-15
Percentage prevalent TB, treatment-naive adults 0-10
Percentage prevalent TB, treatment-experienced adults 0-60
Percentage HIV-positive, all adults 2:6-10-4
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SS.2. Calibration procedure

The goal of model calibration is to use the observations gathered throughout the epidemic to reduce
the uncertainty around model input parameters. We used a Bayesian calibration approach*> where
the likelihood of observations in Tables S15-16 are measured using the probability distributions
described below. For a given simulated trajectory:

1.  The likelihood of the observed adult population size in each year (Table S15) is measured by a

normal distribution with mean equal to the adult population size generated by the simulated
trajectory. In the absence of sampling distribution for the estimated population size, we
approximated the standard division of these normal distributions by 0.05N; /2, _4/, where N; is
the adult population size in year t and z;_g/5 is the (1 — a/2) upper critical value of a standard
normal distribution. We chose @ = 0.05 (z1_¢.05/2=1.96). The likelihood of observed population
of children is measured using the same approach.

2. The likelihood of observed prevalence of treatment-experienced adults is measured by a binomial
distribution where the number of trials is set to the number of population-based survey
participants and the probability of success is set to the prevalence of treatment-experienced adults
projected by the simulated trajectory. We approximate the number of survey participants from

the reported confidence intervals [L, U] (see Table S15) by solving% = Zi—a/2 / %ﬁ(l —p)

for n, where P is the estimated prevalence provided in Table S15. The likelihood of observed
HIV prevalence, percentage prevalent TB among treatment-naive adults and percentage prevalent
TB among treatment-experienced adults are calculated using the approach described above.

3. The likelihood of the observed number of treatment-naive adults starting TB treatment in each
year (Table S16) is measured by a binomial distribution where the number of trials is set to the
population size of treatment-naive adults produced by the simulated trajectory and the probability
of success is set to proportion of treatment-naive adults who started TB treatment in that year of
the simulation. The likelihoods of the observed number of treatment-experienced adults starting
TB treatment and the number of notified cases of pediatric TB are calculated in the same way.

S6. Outcome definitions and data analysis

We projected trajectories of TB incidence, prevalence and mortality. Incident TB was defined in
our model as the number of adults and children, regardless of treatment history and HIV status,
who transitioned into any of the infectious TB compartments; individuals remaining infectious
after incomplete treatment were not counted in incidence estimates. Prevalent TB was defined as
the number of adults and children in any of the infectious compartments at a particular point in
time. TB mortality was defined as the number of adults and children who died while either in any
of the infectious or TB treatment compartments.

Best estimates of incidence, prevalence and mortality were derived by calculating the mean of
values projected from the 1,000 sampled model trajectories. We calculated 95% percent
uncertainty intervals representing the 2-5th and 97-5th percentiles of the 1,000 sampled
trajectories. The impact of both interventions was defined as the cumulative number of incident
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and prevalent TB cases and TB deaths that was averted in the population (compared to the baseline
scenario of no targeted interventions) during a 10-year period (2016 - 2025).

S7. Posterior estimates for the natural history of TB by history of TB
treatment

Posterior estimates for parameters describing the natural history of TB among treatment-
experienced and treatment-naive people are shown in Figures S3-S6.

S8.  Sensitivity and scenario analyses

Detailed results for the sensitivity analysis as described in the main document are shown in Table
S18 and Figure S7(A). Results from additional scenario analyses are illustrated in Figures S7(B
und C), S8 and S9.

Table S18: Sensitivity analysis: Partial Rank Correlation Coefficients (PRCC)

Model parameter | PRCC P-Value
Demographics

Annual per capita birth rate -0-042 0-176
Annual natural death rate among children (<15 years) -0-126 <0-001
Annual natural death rate among adults (>15 years) 0-001 0-977
Natural death rate ratio, TB treatment-experienced adults to treatment-naive adults -0-459 <0-001
Probability of Fast Progression to Active TB Upon Primary Infection

Adults, susceptible/treatment-naive/HIV- -0-273 <0-001
Adults, susceptible/treatment-naive/HIV+/non-immunocompromised 0-033 0-305
Adults, susceptible/treatment-naive/HIV+/immunocompromised -0-064 0-045
Children, susceptible 0-043 0-175
Rate of Reactivation of latent TB infection

Adults, latently infected/treatment-naive/HIV- -0-220 <0-001
Adults, latently infected/treatment-naive/HIV+/non-immunocompromised -0-109 0-001
Adults, latently infected/treatment-naive/HIV+/immunocompromised 0-088 0-006
Children, latently infected 0-011 0-739
Percent Reduction in Susceptibility due to Partial Inmunity afforded by Prior Infection (treatment-naive)

Adults, latently infected/HIV- 0-277 <0-001
Adults, latently infected/HIV+/non-immunocompromised 0-076 0-016
Adults, latently infected/HIV+/immunocompromised 0-002 0-945
Rate of Natural Recovery among Undetected Active TB Cases

Adults, infectious/treatment-naive/HIV - 0-036 0-258
Adults, infectious/treatment-naive/HIV+/non-immunocompromised -0-035 0-269
Adults, infectious/ prior complete treatment/HIV- -0-082 0-010
Adults, infectious/prior complete treatment/HIV+/immunocompromised -0-032 0-315
Adults, infectious/ prior incomplete treatment/HIV- 0-107 0-001
Adults, infectious/prior incomplete treatment/HIV+/immunocompromised -0-035 0-269
Children, infectious -0-216 <0-001
Percent Reduction in Susceptibility due to Partial immunity after (treated) active TB

Adults, latently infected/treatment-experienced/HIV- -0-041 0-200
Adults, latently infected/ treatment-experienced/HIV+/non-immunocompromised 0-115 <0-001
Adults, latently infected/ treatment-experienced/HIV+/immunocompromised -0-076 0-017
Adults, latently infected/ prior complete or incomplete treatment/HIV+/ART -0-059 0-064
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Rate of Reactivation of active TB after treatment

Adults, prior complete treatment/HIV- 0-507 <0-001
Adults, prior incomplete treatment/HIV- 0-114 <0-001
Adults, prior complete treatment /HIV+/non-immunocompromised 0-008 0-805
Adults, prior incomplete treatment /HIV+/non-immunocompromised 0-121 <0-001
Adults, prior complete treatment/HIV+/ immunocompromised -0-112 <0-001
Adults, susceptible/ prior incomplete treatment /HIV+/immunocompromised 0-134 <0-001
Probability of Persistent Active TB Following Incomplete Treatment

Adults, prior incomplete treatment/HIV- -0-061 0-055
Adults, prior incomplete treatment/HIV+/non-immunocompromised 0-130 <0-001
Adults, prior incomplete treatment/ HIV+/immunocompromised 0-108 0-001
Adults, prior incomplete treatment/ HIV+/ART 0-092 0-004
Baseline time between disease onset and detection (years)

Adults, infectious/treatment-naive/HIV - 0-018 0-575
Adults, infectious/treatment-naive/HIV+/non-immunocompromised 0-227 <0-001
Adults, infectious/treatment-naive/HIV+/immunocompromised 0-065 0-041
Adults, infectious/treatment-naive/HIV+/ART -0-064 0-043
Adults, infectious/prior complete treatment/HIV- 0-508 <0-001
Adults, infectious/prior complete treatment /HIV+/non-immunocompromised -0-233 <0-001
Adults, infectious/prior complete treatment /HIV+/immunocompromised -0-021 0-502
Adults, infectious/prior complete treatment /HIV+/ ART 0-118 <0-001
Adults, infectious/prior incomplete treatment/HIV- -0-030 0-350
Adults, infectious/prior incomplete treatment /HIV+/non-immunocompromised -0-011 0-729
Adults, infectious/prior incomplete treatment /HIV-+/immunocompromised 0-068 0-033
Adults, infectious/prior incomplete treatment /HIV+/ ART 0-038 0-232
Children, infectious 0-104 0-001
Rate of TB-associated (excess) mortality rate, untreated TB

Adults, infectious/any or no treatment history/HIV- 0-093 0-003
Adults, infectious/any or no treatment history/HIV+/non-immunocompromised -0-090 0-004
Adults, infectious/any or no treatment history/HIV+/ immunocompromised 0-254 <0-001
Adults, infectious/any or no treatment history/HIV+/ART -0-085 0-007
Rate of TB-associated (excess) mortality rate, on TB treatment

Adults, infectious/any or no treatment history/HIV- 0-028 0-376
Adults, infectious/any or no treatment history/HIV+/non-immunocompromised 0-018 0-560
Adults, infectious/any or no treatment history/HIV-+/immunocompromised 0-374 <0-001
Adults, infectious/any or no treatment history /HIV+/ART -0-131 <0-001
HIV-progression, HIV-associated mortality and effect of ART

Annual rate of progression to immunocompromised HIV from non-immunocompromised HIV 0-102 0-001
Annual non-immunocompromised HIV-associated excess mortality rate 0-035 0-270
Annual immunocompromised HIV-associated excess mortality rate 0-095 0-003
Annual HIV-associated excess mortality rate while on ART 0-223 <0-001
Effectiveness of ART in reversing effect of HIV on TB natural history (compared to the 0061 0-054
HIV+/non-immunocompromised state, excluding mortality)

Efficacy of 2°IPT

Reduction in TB reactivation rate 0-280 <0-001
Reduction in probability of fast progression to TB after reinfection 0-019 0-558
Susceptibility to infection

Ratio: susceptible Children to HIV-negative, susceptible adults 0-358 <0-001
Ratio: latently infected children to HIV-negative, susceptible adults 0-143 <0-001
Infectiousness

Adults, treatment-naive, HIV- -0-339 <0-001
Adults, treatment-naive, HIV+/non-immunocompromised 0-109 0-001
Ratio: adults, HIV+/immunocompromised to adults, HIV+/non-immunocompromised -0-003 0-926
Ratio: adults, HIV+/on ART to adults, HIV-+/non-immunocompromised 0-050 0-117
Ratio: children to treatment-naive adults -0-087 0-006
Ratio: adults, treatment-experienced to adults, treatment-naive 0-043 0-172
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Figure S1: Model subcomponent for children aged 0-14 years

Not shown are mortality rates; grey dashed arrows indicate age transition into the corresponding compartments of the
adult component of the model (see Figure 1, main manuscript)
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Figure S2. Projected coverage of antiretroviral treatment (ART) among HIV infected adults, 2004 - 2025
Panel A: treatment-naive adults

Panel B: treatment-experienced adults
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Figure S3: Posterior distribution for the relative susceptibility to reinfection among treatment-naive, latently
infected adults using the susceptibility to primary infection among treatment-naive, susceptible adults as a
reference (assuming partial immunity afforded by prior infection)

HIV- HIV+ non-immunocompromized HIV+ immunocompromized

Ji

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Prior: Uniform [0-13; 0-63] Prior: Uniform [0-32; 0-77] Prior: Uniform [0-61; 0-86]

%
-

Figure S4: Posterior distribution for the relative susceptibility to reinfection among treatment-experienced
adults using the susceptibility to primary infection among treatment-naive, susceptible adults as a reference
(assuming partial immunity afforded by prior infection)
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Figure S5: Posterior distribution for the annual reactivation rate among HIV-negative latently-infected adults,
by history of previous TB treatment
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Figure S6: Posterior distribution for the probability of fast progression to active TB upon primary infection by
status of HIV co-infection, treatment-naive, susceptible adults
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Figure S7: Sensitivity and scenario analyses: Partial rank correlation coefficients for the top 10 model
parameters with the greatest influence towards the number of TB cases averted through TACF and 2°IPT
interventions (5A); expected number of TB cases averted (5B) and deaths averted (5C) as the result of TACF
and 2°IPT interventions with respect to the baseline scenario for varying TACF intervals and probabilities of
enrollment in 2°IPT after the completion of TB treatment. Note that the space between data points for different
series (5B/5C) is intended to improve readability and is not proportional to scale of the x-axis; error bars represent
95% uncertainty intervals.
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Figure S8: Expected number of TB cases (Fig. A) and deaths (Fig. B) averted with respect to the baseline
scenario as the result of annual TACF and 2°IPT when the probability of annual 2°IPT drop-out varied
between 5% and 25%. Series represent different probabilities of receiving 2°IPT after completing TB treatment
(50%-90%; see legend); space between data points of different series is for better readability and not proportional to
scale of the x-axis; error bars represent 95% uncertainty intervals.
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Figure S9: Expected number of TB cases (Fig. A) and deaths (Fig. B) averted as the result of annual TACF and
2°IPT interventions with respect to a scenario where the TB force-of-infection (FOI) is reduced by 50%
compared to the TB force-of-infection estimated for our study population. Space between data points of different
series is for better readability and not proportional to scale of the x-axis; error bars represent 95% uncertainty intervals.
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