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Tuberculosis control interventions targeted to previously 
treated people in a high-incidence setting: a modelling 
study
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Summary
Background In high-incidence settings, recurrent disease among previously treated individuals contributes 
substantially to the burden of incident and prevalent tuberculosis. The extent to which interventions targeted to this 
high-risk group can improve tuberculosis control has not been established. We aimed to project the population-level 
effect of control interventions targeted to individuals with a history of previous tuberculosis treatment in a 
high-incidence setting.

Methods We developed a transmission-dynamic model of tuberculosis and HIV in a high-incidence setting with a 
population of roughly 40 000 people in suburban Cape Town, South Africa. The model was calibrated to data 
describing local demography, TB and HIV prevalence, TB case notifications and treatment outcomes using a Bayesian 
calibration approach. We projected the effect of annual targeted active case finding in all individuals who had 
previously completed tuberculosis treatment and targeted active case finding combined with lifelong secondary 
isoniazid preventive therapy. We estimated the effect of these targeted interventions on local tuberculosis incidence, 
prevalence, and mortality over a 10 year period (2016–25).

Findings We projected that, under current control efforts in this setting, the tuberculosis epidemic will remain in 
slow decline for at least the next decade. Additional interventions targeted to previously treated people could 
greatly accelerate these declines. We projected that annual targeted active case finding combined with secondary 
isoniazid preventive therapy in those who previously completed tuberculosis treatment would avert 
40% (95% uncertainty interval [UI] 21–56) of incident tuberculosis cases and 41% (16–55) of tuberculosis deaths 
occurring between 2016 and 2025.

Interpretation In this high-incidence setting, the use of targeted active case finding in combination with secondary 
isoniazid preventive therapy in previously treated individuals could accelerate decreases in tuberculosis morbidity 
and mortality. Studies to measure cost and resource implications are needed to establish the feasibility of this type of 
targeted approach for improving tuberculosis control in settings with high tuberculosis and HIV prevalence.

Funding National Institutes of Health, German Research Foundation.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
Worldwide, an estimated 10·4 million people developed 
tuberculosis and 1·8 million deaths were attributable to 
the disease in 2015.1 Substantial innovation in 
tuberculosis control is needed to reach the targets of 
the new global End TB Strategy, which aims to eliminate 
the disease by the year 2035.2 The rates of tuberculosis 
decline must accelerate in settings with the highest 
disease incidence, some of which are located in 
southern Africa and are facing the dual burden of 
tuberculosis and HIV.3 In these settings, the prevalence 
of untreated tuberculosis remains high, and 
conventional control approaches that rely on passive 
case finding can fail to identify infectious cases early 
enough to prevent transmission.4–6

Active case finding and wide-scale use of preventive 
therapy have been considered as enhanced activities for 
improving tuberculosis control, but these approaches 

require substantial investment.7 Furthermore, dis
appointing results from community-randomised trials 
of population-wide case finding and preventive therapy 
interventions8,9 have tempered enthusiasm for 
untargeted use of these interventions. It remains 
unknown whether targeting of case finding and 
preventive therapy to high-risk groups could be an 
effective approach for disease control in communities. 
The broader effect of a targeted approach depends on 
whether it is possible to prevent disease or reduce the 
duration of infectiousness among an easily identifiable 
subgroup that experiences a high relative risk of disease 
and is responsible for a substantial proportion of 
transmission.

One subgroup that might be attractive for targeted 
interventions is individuals with a history of previous 
tuberculosis treatment.10 Studies from southern Africa 
show a high incidence of recurrent tuberculosis even 
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after previous successful treatment,11–14 resulting from 
both endogenous reactivation and exogenous re
infection.15 We recently documented a large burden of 
prevalent tuberculosis in previously treated adults in 
24 high tuberculosis burden communities in southern 
Africa, consistent with the hypothesis that this risk 
group drives a substantial proportion of transmission 
in these settings.16

In this study, we used a transmission-dynamic model 
to project the effect of two targeted control 
interventions—targeted active case finding and 
secondary isoniazid preventive therapy—in individuals 
who previously completed tuberculosis treatment in a 
high-incidence setting in suburban Cape Town, 
South Africa. We estimated the effect of these targeted 
interventions on tuberculosis incidence, prevalence, 
and mortality over a 10-year period.

Methods
Modelling approach
We developed a stochastic compartmental transmission-
dynamic model of the tuberculosis and HIV epidemic 
in a high-incidence setting of roughly 40 000 residents 
in suburban Cape Town, South Africa; the appendix 
provides details about the study setting. The 
tuberculosis component of our model followed the 
conventions of earlier models,17–21 with additional 

structure to distinguish between individuals who were 
never treated for tuberculosis (treatment-naive) and 
those who were previously treated for tuberculosis 
(treatment-experienced; figure 1).

We adopted previous ranges for parameters that 
allowed for differential partial immunity against re-
infection and differential reactivation rates in 
treatment-experienced and treatment-naive, latently 
infected individuals, and differential delay in detecting 
tuberculosis in individuals with and without history of 
tuberculosis treatment (table 1). We also allowed for 
higher infectiousness in treatment-experienced 
compared with treatment-naive tuberculosis cases, as 
suggested by local tuberculosis prevalence surveys that 
reported that treatment-experienced individuals with 
tuberculosis were more likely to report cough and more 
likely to be smear-positive than treatment-naive 
individuals without the disease.16 Among individuals 
with incomplete tuberculosis treatment, we assumed 
that up to 20% remained infectious, consistent with 
findings from a retrospective cohort study done in the 
study setting.26 Table 1 shows a list of key model 
parameters describing differences in treatment-naive 
and treatment-experienced individuals.

The HIV component of the model accounts for HIV 
infection, progression to a state of immunocompromised 
HIV infection, and antiretroviral treatment (ART; 

Research in context

Evidence before the study
Up to now, no empirical studies have been done of the 
population-level effect of interventions that aim to prevent 
recurrent disease or more rapidly detect tuberculosis in 
previously treated people. To establish whether 
population-based mathematical models have been employed to 
estimate the effect of tuberculosis interventions targeted to 
previously treated people, we did a PubMed search of relevant 
articles published in any language through March 7, 2017, using 
the search terms “(tuberculosis) AND (recurren* OR relapse OR 
reinfection OR re-infection OR re-treatment OR previous 
treatment) AND (model* OR simulation)”. We also reviewed 
titles and abstracts of mathematical modelling studies identified 
through an earlier comprehensive systematic literature review of 
studies describing mathematical and economic modelling of 
tuberculosis published through March 30, 2013 (conducted by 
Tuberculosis Modeling and Analysis Consortium [TB-MAC]). 
While mathematical models have considered the effect of 
improving treatment outcomes as a means of reducing relapse 
and associated transmission, none has addressed preferential 
targeting of tuberculosis control interventions to former 
tuberculosis patients.

Added value of this study
We developed a transmission-dynamic mathematical model 
of the tuberculosis epidemic and calibrated it to 

epidemiological and demographic data from a setting with a 
high incidence of tuberculosis in suburban Cape Town, 
South Africa. High rates of recurrent tuberculosis and a high 
prevalence of tuberculosis in previously treated people have 
previously been reported from this setting. We presented 
estimates of the potential effect of tuberculosis interventions 
targeted to people who completed an episode of tuberculosis 
treatment and noted that targeted prevention and case 
finding efforts could yield substantial benefits for tuberculosis 
control at the population level.

Implications of all the available evidence
Our results suggest substantial public health potential for 
control interventions targeted towards individuals with a 
history of previous tuberculosis treatment in settings with a 
high disease incidence. In these settings, previously treated 
people are especially attractive for targeted control 
interventions because they remain at an increased risk of active 
tuberculosis after apparent cure, contribute substantially to 
onward transmission, and should be readily identifiable by 
national tuberculosis programmes. Efforts to establish the 
feasibility and costs of such targeted interventions are needed 
to establish their cost-effectiveness in tuberculosis and HIV 
endemic settings.

See Online for appendix
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figure 1). We also implemented a model subcomponent 
for children aged 0–14 years. Additional model details 
including the subcomponent for children are described 
in the appendix.

Model initialisation and parameter estimation 
approach
We calibrated the model to data between 2002, and 2008; 
model simulations were initiated in 1992 to allow for a 
10-year burn-in period. We specified an initial 
population size of 32 889 (25 903 adults and 
10 427 children aged 0–14 years), informed by local 
census data and projections of population growth. The 
values of many parameters in tuberculosis and HIV 
co-epidemics models are not known with certainty. 
Therefore, we adopted a Bayesian calibration approach27 
to identify parameter sets that resulted in simulated 
trajectories with good fit to available epidemiological 
data (table 2). To implement this approach, we specified 

previous distributions for each parameter. Multiple 
parameters sets were randomly and independently 
selected from these distributions. We used each of 
these parameter sets to simulate epidemic trajectories, 
and measured the goodness-of-fit for each of these 
simulations against several calibration targets. These 
calibration targets were operationalised as the 
likelihood of recording the epidemiological data 
conditional on the simulated values. The appendix 
provides additional details about the likelihood function 
used and the methods to characterise the posterior 
parameter distributions. Figure 2 displays the fit of 
simulated trajectories against the calibration targets 
listed in table 2.

Interventions
We used the model to project the effect of two targeted 
interventions: targeted active tuberculosis case finding 
and secondary isoniazid preventive therapy. For 

Figure 1: Structure of the mathematical model
Dashed arrows are modelled interventions, 2°IPT=secondary isoniazid preventive therapy. TACF=targeted active case finding. Mortality rates are not shown. The 
childhood subcomponent and corresponding transitions are shown in the appendix.
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targeted active case finding we assumed that all adults 
who previously completed tuberculosis treatment were 
re-evaluated for active tuberculosis on average once per 
year and referred for tuberculosis treatment. We 
modelled targeted active case finding by increasing the 
rate of diagnosis, resulting in reductions in the average 
diagnostic delay, and the expected period of 
infectiousness (figure 1).

For secondary isoniazid preventive therapy, in the 
first year of intervention, we modelled a catch-up 

treatment campaign that reached 90% of individuals 
with previously completed tuberculosis treatment in 
the population. Subsequent to this catch-up period, we 
assumed that secondary isoniazid preventive therapy 
was offered to individuals after the completion of a full 
course of tuberculosis treatment and that an average of 
90% of individuals completing treatment were enrolled. 
Secondary isoniazid preventive therapy reduces the rate 
of tuberculosis reactivation and the risk of progression 
to disease following re-infection. We allowed the 

Uniform prior 
distribution

Source

Relative infectiousness of treatment-experienced vs 
treatment-naive adults with active tuberculosis (ratio)

1·000 to 1·500 Assumption, based on findings from Marx et al16

Percentage reduction in susceptibility due to partial immunity (HIV-negative adults)

During latent tuberculosis infection (tuberculosis 
treatment-naive)

0·370 to 0·870 Menzies et al,20 Dye and Williams,22 Dye and Espinal,23 Cohen et al,24 Dowdy 
and Chaisson25

After complete tuberculosis treatment 0·370 to 0·870 Assumption

After incomplete tuberculosis treatment 0·370 to 0·870 Assumption

Annual rate of tuberculosis reactivation (HIV-negative adults)

Latent infection 0·0003 to 0·0024 Menzies et al,20 Dye and Williams,22 Dye and Espinal,23 Cohen et al,24 
Dowdy and Chaisson25

Previously treated active tuberculosis 0·0003 to 0·048 Assumption

Baseline time (years) between onset of tuberculosis and detection (adults, independent of tuberculosis treatment history)

Treatment-naive, HIV-negative adults and children 0·083 to 3·000 Menzies et al,20 Dye and Williams,22 Dye and Espinal,23 Cohen et al,24 
Dowdy and Chaisson25

Treatment-experienced, HIV-negative adults 0·083 to 2·000 Assumption

HIV-positive adults 0·083 to 2·000 Assumption

Percentage tuberculosis treatment completion

Treatment-naive adults Time-varying Estimated from tuberculosis treatment register database used in Marx et al.14

Adults after previous complete tuberculosis treatment Time-varying ..

Adults after previous incomplete tuberculosis treatment Time-varying ..

Probability of persistent active tuberculosis following 
incomplete tuberculosis treatment (adults, any HIV status)

0 to 0·200 Based on data from Marx et al26

Table 1: Selected model parameters describing differences between treatment-experienced and treatment-naive individuals

Value 95% 
confidence 
interval

Source

Total population (2002)

Adults 25 903 ·· City of Cape Town*

Children 10 427 ·· City of Cape Town

Percentage tuberculosis treatment-experienced adults (2002) 9·70 8·70–10·90 den Boon et al28

Percentage tuberculosis prevalence, treatment-naïve adults (2002) 0·51 0·26–0·76 den Boon et al28

Percentage tuberculosis prevalence, treatment-experienced adults 
(2002)

2·99 1·14–4·77 den Boon et al28

Percentage HIV prevalence, adults (2002) 5·20 ·· Assumption, based on data from Western Cape 
Department of Health29

Number of children who started tuberculosis treatment (2002–08) Time-varying ·· Tuberculosis treatment register database used in Marx et al.14

Number of treatment-naive adults who started tuberculosis 
treatment (2002–08)

Time-varying ·· Tuberculosis treatment register database used in Marx et al.14

Number of treatment-experienced adults who started tuberculosis 
treatment (2002–08)

Time-varying ·· Tuberculosis treatment register database used in Marx et al.14

*Unpublished end-of-year estimates (community level) from the 2001 South Africa population census provided by the City of Cape Town.

Table 2: Overview of calibration targets and data sources
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preventive effects of secondary isoniazid preventive 
therapy to vary between 45% and 85%, a range informed 
by two previous studies.30,31 We assumed that the relative 
effect of secondary isoniazid preventive therapy was 
independent of HIV infection, but the absolute effect 
associated with this intervention remains greater for 
those with HIV in view of their higher reactivation rate 
and risk of progression.

Secondary isoniazid preventive therapy was intended 
as a lifelong intervention but we assumed that, on 
average, 15% of people currently on secondary isoniazid 
preventive therapy drop out every year (resulting in an 
expected duration of 6·6 years of secondary isoniazid 
preventive therapy), and that the protective effect of 
secondary isoniazid preventive therapy does not extend 
beyond the cessation of treatment.32

Model outcomes and data analysis
We projected trends in tuberculosis incidence, pre
valence, and mortality for 10 consecutive years—ie, 
2016–25, under the baseline scenario and under 
two interventions scenarios: targeted active case finding 
alone and targeted active case finding plus secondary 
isoniazid preventive therapy. The effect of these 
interventions was defined as the cumulative number of 

tuberculosis cases and deaths averted during the 10-year 
period relative to the baseline scenario. The results are 
presented as the mean and 95% uncertainty intervals 
(the 2·5th and 97·5th percentiles of outcome values 
derived from 1000 simulated trajectories).

Sensitivity and scenario analyses
To assess how sensitive the projected effect of targeted 
active case finding and secondary isoniazid preventive 
therapy was to input parameters of our model, we 
calculated partial rank correlation coefficients.33,34 The 
coefficients measure the correlation between an input 
parameter and the projected model outcome (number 
of incident tuberculosis cases averted) while adjusting 
for other parameters in the model. Additionally, we did 
the following types of scenario analyses: the projected 
effect of both targeted interventions under different 
periodicities of targeted active case finding (every 6 vs 
12 and 24 months on average), different probabilities 
of secondary isoniazid preventive therapy enrolment 
(none vs 50%, 75%, and 90%), and different annual 
rates of drop-out from secondary isoniazid preventive 
therapy (5% vs 15% and 25%) were assessed. 
Furthermore, to provide additional insight on how well 
these targeted interventions might perform in 
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communities with lower transmission rates, we report 
results for a hypothetical scenario where we reduced 
the force of infection by 50% relative to that in our 
study setting.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had 
full access to all of the data and the final responsibility 
to submit for publication.

Results
We estimated that in 2016, 13% (95% uncertainty 
interval [UI] 11–16) of all adults in this population had 
previously been treated for active tuberculosis. The 
estimated prevalence of untreated tuberculosis was 
2·2% (95% UI 0·9–3·8) in treatment-experienced 
adults, about 5·5 times higher than that in treatment-
naive adults (0·4%, 0·1–0·8).

The identified parameter posterior distributions sug
gested that HIV uninfected treatment-experienced 
people were, on average, 1·6 times (95% UI 0·4–3·4) 

more susceptible to re-infection than were HIV 
uninfected people who were latently infected and 
tuberculosis treatment-naive. HIV uninfected adults 
who had completed tuberculosis treatment experienced, 
on average, a 35 times (95% UI 3·2–104·0) higher rate 
of tuberculosis reactivation than people who were 
latently infected and tuberculosis treatment-naive. The 
appendix provides posterior distributions of key 
parameters of the natural history of tuberculosis for 
treatment-experienced and treatment-naive individuals.

In the absence of targeted interventions, we projected 
4457 (95% UI 2741–6723) incident tuberculosis cases 
and 623 (328–1031) tuberculosis-associated deaths 
between 2016 and 2025. In this period, 1423 (95% UI 
670–22 311) incident tuberculosis cases will occur 
among adults who had completed a prior episode of 
treatment, representing 32% (20–39) of all incident 
cases.

Figure 3 shows trends in tuberculosis incidence 
projected for treatment-naive and treatment-
experienced adults over a 25-year period. Among 
treatment-naive adults, mean tuberculosis incidence 
per 100 000 people was 903 (95% UI 541–1147) 
in 2016 and was projected to decrease to 787 (287–1020) 
by 2025 (figure 3). Mean tuberculosis incidence among 
treatment-experienced adults was 4926 (95% UI 
2949–6857) per 100 000 people in 2016, 5·5-times higher 
than among treatment-naive adults, and is expected to 
fall to 4353 (1874–5917) by 2025. The projected average 
annual decrease in tuberculosis incidence between 
2016 and 2025 was 1·3% in treatment-naive and 1·2% in 
treatment-experienced adults.

With regards to the epidemiological effect of the 
interventions, our model suggests that annual targeted 
active case finding among individuals who had 
completed tuberculosis treatment would reduce the 
average duration of infectious disease in this group 
from 9·7 months (95% UI 2·3–17·5) to 5·0 months 
(1·9–7·1).

Figure 4 shows trends in tuberculosis incidence, 
prevalence, and mortality under the baseline scenario, 
under targeted active case finding alone, and under 
combined targeted active case finding and secondary 
isoniazid preventive therapy. The average annual 
decline in tuberculosis incidence between 2016 and 2025 
relative to 2015 was 1·6% at baseline (no intervention), 
3·0% under annual targeted active case finding, and 
5·4% under annual targeted active case finding in 
combination with secondary isoniazid preventive 
therapy. Targeted active case finding alone would avert 
a total of 621 (95% UI 13–1355) incident tuberculosis 
cases between 2016 and 2025, 14% (0·4–28·0) of all 
incident tuberculosis cases projected under the baseline 
scenario. Over the same time period, targeted active 
case finding would avert a total of 138 (95% UI 13–296) 
tuberculosis deaths, 21% (2·5–39·0) of all tuberculosis 
deaths projected under the baseline scenario. The 

Figure 3: Tuberculosis incidence among treatment-naive and 
treatment-experienced adults between 2003 and 2025, projected under 
the baseline scenario
Mean estimates (bold red line) represent the mean prediction at any given year. 
The 100 trajectories shown represent a random subset of the 1000 trajectories 
selected for analysis.
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implementation of targeted active case finding in 
combination with secondary isoniazid preventive 
therapy would avert 1805 (95% UI 565–2952) incident 
tuberculosis cases between 2016 and 2025, 40% (21–56) 
of all incident tuberculosis cases projected under the 
baseline scenario. The combined targeted intervention 
would avert a total of 267 (95% UI 70–543) tuberculosis 
deaths, 41% (16–55) of all tuberculosis deaths projected 
under the baseline scenario.

Findings of sensitivity analysis showed that the 
projected effect of targeted active case finding and 
secondary isoniazid preventive therapy was most sensitive 
to the tuberculosis reactivation rate after completion of 
tuberculosis treatment, the time between tuberculosis 
disease onset and detection in the target group, the 
natural mortality rate in treatment-experienced relative to 
treatment-naive adults, and the efficacy of secondary 
isoniazid preventive therapy, among other parameters 
(appendix p 18). Lower periodicity of targeted active case 
finding (every 24 vs 12 months) and lower uptake of 
secondary isoniazid preventive therapy, as well as higher 
drop-out from secondary isoniazid preventive therapy, 
resulted in reduced effect (appendix p 19). In a 
hypothetical scenario in which we reduced the force of 
infection to 50% of the baseline value, we noted that 
annual targeted active case finding in combination 
with secondary isoniazid preventive therapy averted 
34% (95% UI 16–54) of 2811 (1742–4503) incident 
tuberculosis cases and 36% (14–56) of 444 (231–760) 
tuberculosis deaths estimated at baseline (appendix p 19).

Discussion
In this study, we used a calibrated population-based 
mathematical model to project the effect of two types of 
interventions targeted to previously treated people in a 
tuberculosis high-incidence setting. Our data suggest that, 
if targeted active case finding and secondary isoniazid 
preventive therapy were introduced to complement 
existing tuberculosis control efforts in this setting, the 

burden of tuberculosis could be substantially reduced. 
Our study supports the idea that efforts for prevention and 
prompt detection of recurrent tuberculosis35 could offer 
novel opportunities for tuberculosis control in settings of 
high tuberculosis incidence.

We propose these targeted control interventions during 
a time when untargeted efforts, such as population-wide 
enhanced case finding and household-based screening8 
and mass isoniazid preventive therapy9 have yielded 
insufficient evidence of effect, and where novel 
approaches are urgently needed to reduce the burden of 
tuberculosis in communities most affected by the 
disease. Targeting control efforts to groups at high risk 
of tuberculosis could enable health services to make 
more efficient use of available resources. In many 
high tuberculosis prevalence settings, previously treated 
people can be easily identified and experience an elevated 
risk of tuberculosis,16 therefore they might be an attractive 
target for focused interventions.

We project that within 10 years in this setting, a 
combination of targeted active case finding and 
secondary isoniazid preventive therapy could avert 
more than a third of incident tuberculosis cases and 
tuberculosis deaths. Targeted active case finding alone 
could have a notable effect on tuberculosis prevalence 
and mortality, but is expected to have a smaller effect on 
incidence; our simulations suggest that a marked effect 
of targeted active case finding is achieved when it can 
be coupled with secondary isoniazid preventive therapy. 
Our projections show that much of the effect of targeted 
active case finding and secondary isoniazid preventive 
therapy accrues in the first few years after their 
implementation. The diminishing effect over time 
suggests a saturation effect, which might imply that 
such targeted interventions could be used within an 
adaptive control strategy.21

Our study constitutes a first step towards better 
understanding the effect of interventions targeted to 
previously treated people in high-incidence settings. 

Figure 4: Projected epidemiological effect of interventions targeted to individuals with a history of previous complete tuberculosis treatment in a 
high-incidence setting in suburban Cape Town, 2016–2025
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However, several limitations must be noted. We applied 
our model to a specific setting with a high tuberculosis 
incidence and where high rates of recurrent tuberculosis 
due to relapse and re-infection had been previously 
reported.12,14,36 We note that the effect of interventions 
targeted at previously treated people, which we project 
for this setting, might not be easily generalised to other 
high-incidence settings for several reasons. High rates of 
recurrent tuberculosis have been reported from several 
other high-incidence settings.10,11,13 However, the 
population-level effect of targeted interventions will 
also depend on the size of the target group and 
their contribution to tuberculosis transmission in 
the population. In this particular setting, persistently 
high rates of incident tuberculosis have generated a large 
subgroup of people who had previously been treated for 
tuberculosis (about 10% of all adults) and who constitute 
a substantial proportion of the prevalent tuberculosis 
burden in the population (about 30% of prevalent cases).

Although our projections are consistent with the 
epidemiology of tuberculosis in other high-incidence 
communities in South Africa,5,16 we expect interventions 
among previously treated people to be less effective in 
settings with lower tuberculosis incidence, and where a 
smaller proportion of the tuberculosis burden is 
attributable to former tuberculosis patients. For example, 
previously treated people accounted for 4·1% of the adult 
population and for 13% of prevalent tuberculosis cases in 
Lusaka, Zambia,6 and for 1·5% and 15%, respectively, in 
Nigeria37—two settings with lower tuberculosis incidence 
than our study setting. Nonetheless, given that new 
approaches for tuberculosis control are most needed in 
areas where tuberculosis incidence has been persistently 
high, our results suggest that efforts to both prevent and 
rapidly detect and treat recurrent disease will produce 
important health benefits. In our scenario analysis, 
for which we lowered the force of infection by 50%, we 
noted that targeted active case finding in combination with 
secondary isoniazid preventive therapy reduced the 
expected number of incident tuberculosis cases and deaths 
to a lesser extent, but still averted a third of incident cases.

Differences in the prevalence of HIV in a population 
might influence the effect of interventions targeted to 
previously treated people in several ways. Communities 
with higher HIV prevalence might experience more 
recurrent tuberculosis given the elevated risk of re-
infection with tuberculosis among HIV-infected 
individuals,38 and thus benefit more from similar 
interventions. Survival after a first tuberculosis episode 
might be reduced among those not on ART; those on 
ART may be subject to more regular clinical follow-up 
that would limit the benefit of additional case finding 
interventions in this group.

The population-level effect of targeted active case finding 
and secondary isoniazid preventive therapy will be 
dependent upon existing patterns of passive health-care 
seeking behaviour. In settings where there are longer 

delays to diagnosis, additional interventions to more 
rapidly identify and treat recurrent cases would be more 
effectual, whereas in areas where individuals self-present 
quickly after onset of symptoms, we would expect more 
modest returns from investment in combined targeted 
active case finding and secondary isoniazid preventive 
therapy interventions. This is consistent with our 
sensitivity analysis, which showed that the time to passive 
tuberculosis detection among treatment-experienced 
adults correlated with the projected effect.

Uncertainty around parameters of the natural history 
of tuberculosis, particularly those determining re-
infection, disease progression, and mortality among 
previously treated individuals, leads to substantial 
uncertainty in the modelled outcomes. To avoid bias 
towards higher estimates of effect, we used conservative 
prior ranges of parameters for treatment-experienced 
adults, similar to those among treatment-naive adults. 
Specifically, we did not enforce higher susceptibility, 
lower partial immunity, or higher disease progression 
risk among those with a history of previous tuberculosis, 
but did allow posterior parameter values derived from 
calibration to vary by treatment history. While posterior 
distributions of our model are consistent with 
treatment-experienced people being more likely to 
become productively re-infected than treatment-naive 
people, we did not explicitly model differential risk of 
exposure, which could also be a mechanism driving 
increased risk of recurrent disease.39

Our study is further limited by uncertainty around 
the efficacy of secondary isoniazid preventive therapy 
towards preventing recurrent tuberculosis. As shown 
in our sensitivity analysis, higher effects of secondary 
isoniazid preventive therapy would result in higher 
effect at the population level. Only two studies—a 
randomised trial30 and a cohort study31—have assessed 
the effect of preventive therapy on recurrent 
tuberculosis. Both were limited in size and focused on 
people living with HIV. More available data from the 
field would improve our projections.

We used a simple mathematical model that does not 
enable us to explore specific intervention designs or 
consider many practical issues related to implementation. 
In particular, in our main analysis we assumed that 
interventions could be aggressively rolled out in these 
suburban settings—ie, that individuals with previous 
treatment could be effectively identified, enrolled, and 
screened for tuberculosis on average every 12 months, 
that 90% could be enrolled in secondary isoniazid 
preventive therapy upon completing treatment, and 
15% would drop out from secondary isoniazid preventive 
therapy every year. Although we believe high coverage 
levels of the interventions could be achieved in this 
relatively small suburban setting, the effect of these 
interventions would clearly be lower if interventions 
were less vigorously applied or if some individuals were 
not reachable by the intervention.
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In conclusion, our study provides impetus for further 
research to better understand the individual and 
population-level benefits of tuberculosis control 
interventions targeted at previously treated people. 
Studies and trials of the feasibility, safety, effect, and 
population-level effect of targeted active case finding and 
secondary isoniazid preventive therapy in previously 
treated people in high-incidence settings would be 
particularly useful. Other interventions to prevent 
recurrent tuberculosis such as adjuvant immunotherapy 
during tuberculosis treatment,40 extending the duration of 
tuberculosis treatment for certain high-risk patients,34 or 
post-treatment vaccination might be considered in the 
future. Further mathematical modelling, in which 
detailed costs of interventions are also included, would be 
useful for policy makers as they could establish whether 
such interventions are cost-effective and how investment 
in these approaches may compare with alternatives.
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 Study setting 

Our study focuses on two adjacent suburban communities with a high tuberculosis (TB) burden in 
Cape Town, South Africa, covering an area of 3.4 km², and with a total population of 39,930 
people in 2011. The internationally-endorsed TB control strategy (DOTS) was introduced in these 
communities in 1996. In the first year of the program, the rate of notified TB (all forms) was 1,340 
cases per 100,000 residents.1 Treatment success rates were initially low but increased rapidly and 
exceeded 80% amongst smear-positive TB cases in 2003.2 However, persistently high annual rates 
of infection (estimated 3·7% in 1999 and 4·1% in 20052) suggest that control measures, while 
improving individual outcomes, did not reduce transmission.3 High local rates of recurrent TB 
after previous successful treatment4-6 and after loss to follow-up from treatment7 have also been 
reported; a lung health survey conducted in 2001 identified a high prevalence of undetected TB 
among previously treated residents.8 

 Model structure 

Childhood subcomponent: At birth, individuals enter the childhood subcomponent of the TB 
model (Figure S1) in the susceptible state, where they face a time-varying risk of infection, 
conditional on the force of infection which is dependent on the total number of infectious cases 
(adults and children) at time t. Upon primary infection, children either progress rapidly to 
infectious TB or reach a latently infected (non-infectious) state. Children may remain in the latent 
state, or their infection may reactivate and progress to infectious TB. They may also become 
reinfected and either rapidly progress to infectious disease or remain in the latent state. Upon 
infectious disease, children may move into a recovered state after being found and treated.  
At any state, children may leave the model subcomponent into the main (adult) component at rates 
reflecting their age progression beyond 14 years (Figure S1). Specifically, children transit from 
the susceptible state into the adult treatment-naïve susceptible state, from the latently infected state 
into the adult treatment-naïve latently infected state, and from the infectious state into the adult 
treatment-naïve infectious state. We assume that treatment of childhood TB is always complete, 
thus, children in the recovered state move into the adult latently infected after complete treatment 
state. 
 
Main component (adults): Treatment-naïve susceptible adults transition from the susceptible state 
to the latently infected state or directly into the infectious TB state after primary infection (Figure 
1, main manuscript). Latently infected treatment-naïve adults may experience reactivation disease 
and transition into the infectious TB state. If reinfected while in the latently infected state, they 
may progress to infectious disease or remain latently infected. Treatment-naïve infectious adults 
may be identified and move into either of the two treatment compartments (treatment that is 
completed, treatment that is incomplete). The transition into these two treatment states is 
determined by the case finding rate and the proportion of complete treatment among new (i.e. 
previously treatment-naïve) TB cases estimated for the study setting. Individuals in the incomplete 
treatment state move into a treatment-experienced latently infected state or, upon continuous 
infectious TB, directly into the infectious TB state. From latent infection, they may progress to 
infectious TB either via disease reactivation or following reinfection. Upon complete treatment, 
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all adults transition to a latently infected state (i.e. consistent with many TB models, we assume 
that sterilizing cure is not achieved). We introduced two different states of latent infection for those 
individuals completing treatment. This allows us to distinguish whether individuals were enrolled 
in 2°IPT. Latently infected adults after complete treatment may progress to infectious disease 
either via reactivation or following reinfection. Similar to treatment-naïve infectious cases, cases 
occurring after either incomplete or complete treatment move back into the two treatment states at 
rates determined by case finding rates and the proportion of complete treatment estimated for the 
study setting. We implemented an active case finding rate, incremental to the passive case 
detection rate, to simulate TACF among adults who previously completed TB treatment. 
Individuals may exit the model due to death from any state, with additional excess mortality rates 
due to TB disease and HIV infection implemented in out model. 
 
Model subdivisions for HIV co-infection and antiretroviral treatment: Upon HIV infection 
(Figure 1, main manuscript), HIV-negative adults transit into a non-immunocompromised HIV 
infected state, and upon progression, into an immunocompromised subdivision. Upon initiation of 
antiretroviral treatment (ART), individuals in either of the two prior HIV-positive subdivisions 
may transit into a fourth subdivision. Once initiated on ART, individuals were assumed to stay on 
ART. We did not model HIV in children. 

 Model parameterization 

Parameter values and ranges used in the model along with their sources are provided in the 
subsequent sections and Tables S1-S14. Rates shown are per year unless otherwise specified. 

S3.1. Demographics 
Estimates for demographic parameters are based on data from the Tygerberg sub-district of Cape 
Town in which the study setting is situated. We assumed a constant birth rate throughout the study 
period which was estimated by dividing the number of life births in the study setting reported for 
the year 20039 by the projected population in 2003 (Table S1). Estimates of the natural death rates 
among children 0-14 years of age were derived from unpublished mortality data (for 2011) 
provided by the City of Cape Town Directorate of Health (Table S1). In the absence of published 
data, we derived an estimate of the natural mortality rate among adults through calibration, 
allowing for a 1·0% annual population growth, consistent with unpublished census data for the 
study setting (Table S1). We assumed that the rate of natural death among treatment-experienced 
adults was between equal and 5-times higher compared to treatment-naïve adults. This range takes 
into account the possibility that mortality among former TB patients may be higher10-12 due to a 
variety of factors such as lung impairment and chronic pulmonary disease13 and an elevated risk 
of death from lung cancer14 compared to individuals without a history of TB. 
We assumed that on average, a child would be in contact with 40 other children and 9 adults per 
day, and an adult would be in contact with 15 adults and 9 children per day.15 
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Table S1: Model Parameters – Demographics 
Measure Value [Interval] Source 
Annual per capita birth rate  0·0229 9 
Annual population growth 1·0% estimated from unpublished census 

data, City of Cape Town 
Annual natural death rate among children (<15 years) 0·0017 estimated from unpublished census 

data, City of Cape Town 
Annual natural death rate among adults (≥15 years) [0·0086-0·0096] Experiments with the model 
Natural death rate ratio, TB treatment-experienced 
adults to treatment-naïve adults 

[1-6] assumption 

 

S3.2. Natural history of TB 
Estimates for transition rates between TB-related states were derived from the published literature, 
where available (Tables S2-S5). In accordance with prior modeling studies, we considered that 
distant prior (latent) infection would lead to partial immunity reducing the risk of becoming 
reinfected (Table S4). Parameters for HIV-infected adults take into account that HIV alters the 
natural history of TB. Specifically, HIV-infected individuals are subject to a higher probability of 
fast progression to active TB following infection16,17 (Table S2) and a higher probability of 
reactivation of latent infection18 (Table S3). 
We assumed that children were less likely to transmit TB by the ratio 0·12 [0·034-0·305] 
(compared to treatment-naïve adults) that was based on the probability of smear-positive TB 
among children and adults estimated in a recent meta-analysis.19 
 
 
Table S2: Model Parameters - Probability of Fast Progression to Active TB Upon Primary Infection 

Subgroup Value [Interval] Source 
Adults, susceptible/treatment-naïve/HIV- 0·115 [0·09-0·14] 20-22 
Adults, susceptible/treatment-naïve/HIV+/non- 
immunocompromised 0·33 [0·18-0·51] 20-22 

Adults, susceptible/treatment-naïve/HIV+/ 
immunocompromised 0·805 [0·75-0·91] 20-22 

Children, susceptible 0·118 [0·09-0·14] estimated from 23 
 
 
Table S3: Model Parameters - Rate of Reactivation of latent TB infection 

Subgroup Value [Interval] Source 

Adults, latently infected/treatment-naïve/HIV- 0·001 
[0·0003-0·0024] 

21,22,24,25 

Adults, latently infected/treatment-naïve/HIV+/non- 
immunocompromised 

0·003 
[0·001-0·006] 

21,22,24,25 

Adults, latently infected/treatment-naïve/HIV+/ 
immunocompromised 

0·1275 
[0·080-0·200] 

21,22,24,25 

Children, latently infected 0·001 
[0·0003-0·0024] assumption 
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Table S4: Model Parameters – Percent Reduction in Susceptibility due to Partial Immunity afforded by Prior 
Infection (treatment-naïve) 

 
 
Table S5: Model Parameters – Rate of Natural Recovery among Undetected Active TB Cases 

 

S3.3. Natural history of TB: Characteristics of treatment-experienced adults 
The model allows for specific characteristics in the natural history of TB among individuals 
previously treated for the disease. In the absence of published estimates for many of these 
parameters, we specified prior parameter ranges and derived posterior parameter values through 
calibration (see below). 
We assumed that TB treatment-experienced people were equally likely to be exposed to an 
individual with infectious TB in the community compared with treatment-naïve people. However, 
we allowed treatment-experienced adults to differ from treatment-naïve, latently infected adults in 
terms of their risk of becoming reinfected upon exposure. This was achieved through differential 
parameters for partial immunity towards reinfection among treatment-experienced and treatment-
naïve people derived through calibration (same prior ranges; Table S6, see Table S4 for 
comparison). Rates of reactivation TB after complete and incomplete treatment were derived from 
calibration. To account for the possibility of higher reactivation rates after prior treatment for 
active TB, we specified prior parameter ranges for reactivation rates (Table S7) with the lower 
boundary being equal and the upper boundary 20-times higher than that for reactivation of distant 
prior latent infection (compare Table S3). 
Based on findings from prevalence surveys that treatment-experienced cases of TB were more 
likely to be coughing and to be smear-positive30, we assumed that treatment-experienced TB cases 
were equal to 1·5-times more likely to transmit TB compared to treatment-naïve TB cases in terms 
of their potential to transmit TB. 
Individuals with incomplete treatment may continue to suffer from infectious disease. Based on 
data from a retrospective cohort study conducted previously in the study setting7, we assumed that 
between 0 and 20% of those who were lost to follow-up during treatment remained infectious and 
thus moved directly into the compartment of infectious TB (Table S8). We assumed that recurrent 
cases of TB after previous complete or incomplete treatment were equally likely to transmit 
compared with cases of a first episode of TB. 

Subgroup Value [Interval] Source 
Adults, latently infected/HIV- 0·65 [0·37-0·87] 22,24,26-28 
Adults, latently infected/HIV+/non- 
immunocompromised 0·45 [0·23-0·68] 22,24,26-28 

Adults, latently infected/HIV+/ immunocompromised 0·25 [0·14-0·39] 22,24,26-28 
Children, latently infected 0·65 [0·37-0·87] assumption 

Subgroup Value [Interval] Source 
Adults, infectious/treatment-naïve/HIV- 0·2 [0·15-0·25] 21,22,26,29 
Adults, infectious/treatment-naïve/HIV+/non- 
immunocompromised 0·1 [0·06-0·16] 21,22,26,29 

Adults, infectious/treatment-naïve/HIV+/ 
immunocompromised 0 21,22,26,29 

Children, infectious 0·2 [0·15-0·25] assumption 
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Table S6: Model Parameters –Percent Reduction in Susceptibility due to Partial immunity after (previously 
treated) active TB 

Subgroup Value [Interval] Source 
Adults, latently infected/prior complete or incomplete 
treatment/HIV- 

- 
[0·37-0·87] 

22,24,26-28 

Adults, latently infected/ prior complete or 
incomplete treatment/HIV+/non-
immunocompromised 

- 
[0·23-0·68] 

22,24,26-28 

Adults, latently infected/ prior complete or 
incomplete treatment/HIV+/ immunocompromised 

- 
[0·14-0·39] 

22,24,26-28 

 
Table S7: Model Parameters – Rate of Reactivation of active TB after treatment 

Subgroup Value [Interval] Source 

Adults, prior complete treatment/HIV- 0·001 
[0·0003-0·048] see: S3.2 

Adults, prior incomplete treatment/HIV- 0·001 
[0·0003-0·048] see: S3.2 

Adults, prior complete treatment /HIV+/ 
non-immunocompromised 

0·003 
[0·001-0·12] see: S3.2 

Adults, prior incomplete treatment /HIV+/non-
immunocompromised 

0·003 
[0·001-0·12] see: S3.2 

Adults, prior complete treatment/HIV+/ 
immunocompromised 

0·1275 
[0·080-4·00] see: S3.2 

Adults, prior incomplete treatment /HIV+/ 
immunocompromised 

0·1275 
[0·080-4·00] see: S3.2 

 
Table S8: Model Parameters – Probability of Persistent Active TB Following Incomplete Treatment 

Subgroup Value [Interval] Source 
Adults, prior incomplete treatment/any HIV-status [0-0·20] based on data from 7 

S3.4. TB case detection and treatment 
Parameters for TB case detection rates were derived from calibration. We allowed for shorter times 
to detection assuming that people who had experienced TB treatment may seek care more promptly 
than those without previous TB treatment. We also assumed shorter times to detection for HIV-
infected people (Table S9). The prior ranges used were informed by estimates of infectious disease 
duration before detection from previous studies in South Africa31 and Zimbabwe32. 
We assumed that TB cases on treatment are non-infectious, i.e. they do not contribute to 
transmission. The duration of complete treatment among new and re-treatment cases was estimated 
from treatment register data (Table S10). We assumed that treatment is either complete or 
incomplete. Proportions of complete treatment among treatment-naïve and treatment-experienced 
people between 1996 and 2008 were estimated from the TB register database (Table S11). For the 
years following 2008, we randomly sampled treatment completion probabilities from a uniformly 
distributed range of probabilities specified by the 1996 to 2008 data. 
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Table S9: Model Parameters – Baseline time between disease onset and detection (years) 
Subgroup Value [Interval] Source 
Adults, infectious/treatment-naïve/HIV-  [0.083-3] assumption 
Adults, infectious/ or prior complete or incomplete 
treatment/HIV- 

[0.083-2] assumption 

Adults, infectious/prior treatment-naïve or prior 
complete or incomplete treatment/HIV+ 

[0.083-2] assumption 

Children, infectious [0.083-3] assumption 
 
Table S10: Model Parameters – Duration of treatment (years) 

Subgroup Value [Interval] Source 
Adults, complete treatment 0·50 (0·47-0·57) TB program data 
Adults, incomplete treatment 0·42 (0·31-0·52) TB program data 

 
Table S11: Probability of complete treatment 

Subgroup 
 Year 

Source 
 2002 2003 2004 2005 2006 2007 2008 

Adults, treatment-naïve  91 
(87-94) 

98 
(95-99) 

97 
(94-98) 

94 
(90-96) 

97 
(94-98) 

99 
(96-99) 

98 
(96-99) 

TB program 
data 

Adults, prior complete 
treatment  92 

(82-97) 
92 

(83-96) 
92 

(85-96) 
94 

(86-97) 
88 

(79-94) 
94 

(87-98) 
89 

(80-94) 
TB program 

data 
Adults, prior incomplete 
treatment  60 

(37-79) 
84 

(60-95) 
82 

(56-94) 
65 

(40-84) 
83 

(58-95) 
55 

(33-75) 
77 

(46-93) 
TB program 

data 
 
 

S3.5. TB-associated (excess) mortality 
We considered excess mortality rates (incremental to natural death rates) for two different groups, 
those with untreated active (infectious) TB (Table S12) and those on TB treatment (Table S13). 
We assumed that the excess mortality rate among HIV-infected non-immunocompromised adults 
and those HIV-infected on ART was similar to that among HIV-uninfected individuals. We further 
assumed that the excess mortality rate among untreated children was similar to that among HIV 
uninfected adults, and that children would not die from TB while on treatment (Table S13). 
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Table S12: Model Parameters – Rate of TB-associated (excess) mortality rate, untreated TB 

Subgroup Value [Interval] Source 
Adults, infectious/prior treatment-naïve or prior 
complete or incomplete treatment/HIV- 0·28 [0·20-0·37] 21,22 

Adults, infectious/prior treatment-naïve or prior 
complete or incomplete treatment/HIV+/non-
immunocompromised 

0·28 [0·20-0·37] assumption, see S3.5 

Adults, infectious/prior treatment-naïve or prior 
complete or incomplete treatment/HIV+/ 
immunocompromised 

0·80 [0·47--1·27] 22,33,34 

Adults, infectious/prior treatment-naïve or prior 
complete or incomplete treatment/HIV+/ART 0·28 [0·20-0·37] assumption, see S3.5 

Children, infectious 0·28 [0·20-0·37] assumption, see S3.5 
 
Table S13: Model Parameters – Rate of TB-associated (excess) mortality rate, on TB treatment 

Subgroup Value [Interval] Source 

Adults, infectious (any subcategory) 0·056  
[0·047-0·070] estimated from TB program data 

Children, infectious 0 assumption 

S3.6. Natural history of HIV infection 
Adults may be infected with HIV at any state in the model and move across the HIV subdivisions. 
The rate of HIV transmission in the adult population was derived from calibration. Rates of 
progression from non-immunocompromised to immunocompromised HIV and that of HIV-
associated excess mortality among non-immunocompromised people were estimated from data 
published in the literature (Table S14). The distinction between non-immunocompromised and 
immunocompromised HIV-infected adults was made on the basis of CD4 count cut-off level of 
<350/mm³. HIV-associated excess mortality among immunocompromised people was calculated 
from estimates of survival time among HIV-infected people not on ART, assuming that 75% of 
these died from HIV-related causes other than TB. It was assumed that all children in the study 
setting were and remained HIV uninfected. 
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Table S14: Model Parameters – HIV-progression, HIV-associated mortality and effect of ART 

Measure Value [Interval] Source 
Annual rate of progression to immunocompromised 
HIV from non-immunocompromised HIV 

0·142 
[0·135-0·149] 

35 

Survival time of HIV-infected people not on ART 
(years) 

10·2 
[9·7-10·5] 

36 

Annual non-immunocompromised HIV-associated 
excess mortality rate 

0·008 
[0·005-0·012] 

22,37-41 

Annual immunocompromised HIV-associated excess 
mortality rate 

0·068 
[0·062-0·074] 

calculated from estimated survival 
time, see above 

Annual HIV-associated excess mortality rate while 
on ART 

0·008 
[0·005-0·012] 

22,37-41 

Effectiveness of ART in reversing effect of HIV on 
TB natural history (compared to the HIV+/non-
immunocompromised state, excluding mortality) 

0·69 [0·47-0·81] 42 

 

S3.7. Initiation of antiretroviral treatment among HIV-infected adults 
Assumptions were made to consider ART initiation among HIV-infected people in the study 
setting. 
ART among immunocompromised adults not on TB treatment. We assumed a (historical) rate of 
ART initiation among immunocompromised people of 0·1 per year in 2004, the year of ART roll-
out in Cape Town, and a linear increase of this rate to 0·3 per year in 2016, after which the rate 
remains constant. 
ART among non-immunocompromised adults not on TB treatment. Considering the possibility that 
ART is also offered to HIV-infected people above a CD4 count of 350mm³, we assumed a rate of 
ART initiation among non-immunocompromised people of 0·02 per year in 2004, and a linear 
increase of this rate in the following years to 0·1 per year in 2016, after which the rate remains 
constant. 
ART among immunocompromised and non-immunocompromised adults starting TB treatment. In 
line with national TB guidelines for South Africa43, it was considered that ART is also initiated 
when HIV-infected people start TB treatment. We assumed that ART was initiated among 10% of 
HIV-infected individuals starting TB treatment. This proportions increases linearly to 30% until 
2016 and remains constant at 30% in the following years. We assumed that ART was initiated at 
the start of TB treatment but was not initiated at a later stage during the course of TB treatment. 
Figure S2 shows the projected coverage of ART among treatment-naïve and treatment-experienced 
HIV-infected adults (not on TB treatment) over time derived from our model.  
 

 Simulation approach 

Let 𝜆"←"$ denote the rates at which members of age group 𝑖 ∈ {Ch,	Ad} contact members of age 
group 𝑖+ ∈ {Ch,	Ad} and let H = {ITN, ITI, ITC} denote the set of adult compartments with infectious 
status (TN = treatment-naïve, TI = prior incomplete treatment and TC = prior complete treatment). 
We used 𝑁Ch(𝑡) and 𝑁Ad(𝑡) for the number of children and adults at time 𝑡, and 𝑁0(𝑡) for the 
number of population members in model compartment ℎ. 
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We defined the force of infection for susceptible and latent children (h ∈ {SCh, LCh}) at time 𝑡 as: 
  

𝐹0(𝑡) = 𝛽0 5𝜆Ch←Ch
6I|Ch(7)

6Ch(7)
+ ∑ 𝜆Ch←Ad

6:$(7)

6Ad(7)0$∈; < , (1)  
 
and for susceptible and latent adults (h ∈ {STN, LTN, LTC, LTI}) as:  

𝐹0(𝑡) = 𝛽0 >𝜆Ad←Ch
𝑁I|Ch(𝑡)
𝑁Ch(𝑡)

+ ? 𝜆Ad←Ad
𝑁0$(𝑡)
𝑁Ad(𝑡)0$∈;

@ . (2) 

 
In above equations, 𝛽0 is the transmission parameter in compartments ℎ ∈	{SCh, LCh, STN, LTN, LTC, 
LTI}, where S denotes susceptible, and L denotes latently infected. Based on existing survey data,15 
we assumed 𝜆Ch←Ch = 	4.7, 𝜆Ch←Ad = 𝜆Ad←Ch = 3.1 and 𝜆Ad←Ad = 	10.7. 
To generate epidemic trajectories for this model, we use Monte Carlo simulation. Consider a 
particular compartment Z in which members may depart due to 𝐽 events. For example, members 
of LTN compartment may leave due to reactivation of latent infection, reinfection, or natural death 
(i.e. 𝐽 = 4) (see Figure 1). If the number of individuals in compartment Z at time 𝑡 is 𝑍(𝑡), then 
the number of individuals that leave this compartment due to events 𝑗 ∈ {1,2,… , 𝐽} follows a 
multinomial distribution with total counts of 𝑍(𝑡) and probabilities (𝑝L, 𝑝M, 𝑝N, … 𝑝O), where 𝑝L =

1 − 𝑒∑ RST7
U
SVW  is the probability of not leaving the compartment Z during [𝑡, 𝑡 + Δ𝑡], and 𝑝[ =

RS
∑ RST7
U
SVW

𝑒∑ RST7
U
SVW  is the probability of leaving the compartment Z during [𝑡, 𝑡 + Δ𝑡] due to event 

𝑗 ∈ {1,2,… , 𝐽}.  Having obtained the realizations for the number of individuals who move from 
one compartment to another during [𝑡, 𝑡 + Δ𝑡], we can then update the number of individuals in 
each compartment at time 𝑡 + Δ𝑡. 
 
Model Initialization 
In the absence of published estimates for the prevalence of HIV, active TB and treatment-
experienced individuals in the year 1992 (which marks the start of our simulation warm-up period), 
we determined the initial size of model compartments based on the following:  

1. Prevalence of immunocompromised and non-immunocompromised HIV is sampled, respectively, 
from uniform distributions [%3·5; %5·0] and [%0·5; %1·0]. The prevalence of HIV-negative 
was set to 1 minus the sum of the above two samples.  

2. Prevalence of the treatment-experienced within each HIV subgroup was sampled from the uniform 
distribution [%6·0; %10·0]. The proportion of treatment-experienced with history of complete 
or incomplete TB treatment was set to be equal.  

3. Within the HIV-negative subgroup:  
a. the prevalence of active TB was sampled from [%0·4; %0·6] for treatment-naïve 

subgroup, and from [%1·0; %10] for treatment-experienced subgroup;  
b. the prevalence of latent-TB among treatment-naïve was sampled from  [%40; %60]. 

4. Within non-immunocompromised HIV+ subgroup,  
a. the prevalence of active TB was sampled from [%0·5; %2·0] for treatment-naïve 

subgroup and from [%1·0; %10] for treatment-experienced subgroup; 

U U

U

U
U

U

U
U
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b. the prevalence of latent-TB among treatment-naïve was sampled from [%55; %65]  
5. Within immunocompromised HIV+ subgroup,  

a. the prevalence of active TB was sampled from  [%0·5; %2] for treatment-naïve 
subgroup and from [%1·0; %10] for treatment-experienced subgroup; 

b. the prevalence of latent-TB among treatment-naïve was sampled from [%55; %65]  
6. Among children: 

a. Prevalence of active TB was sampled from [%0·1; %1·0],  
b. Prevalence of latent-TB was sampled from [%30; %70], 
c. Proportion recovered was sampled from [%2·0; %10], 
d. Proportion susceptible was set to 1 minus the sum of the three samples above.  

 
The initial size of compartments representing “on TB treatment” was assumed to be zero at the 
beginning of the simulation period. 
 

 Model calibration 

S5.1. Calibration data sources 
We calibrated the model to data from three main sources. Population census data provided by the 
City of Cape Town were used to obtain estimates of the size and age structure (i.e. children vs. 
adults) of the population in the study setting. Data from a lung health prevalence survey conducted 
in the study setting in 20028 were used to derive estimates of the proportion of adults with a history 
of previous TB treatment and of the prevalence of TB among treatment-naïve and treatment-
experienced adults in 2002. Estimates of the crude prevalence of TB by treatment history were 
calculated from8 by dividing each, the number of treatment-naïve and treatment-experienced adults 
detected with culture-confirmed TB by the total number of adults in the survey sample multiplied 
by each, the proportion of treatment-naïve and treatment-experienced adults in the survey sample, 
respectively. Finally, we accessed TB treatment data from an electronic TB treatment register 
database that had been cleaned for duplicate entries and assessed for data consistency to obtain the 
number of new and previously treated TB cases registered for treatment in the study setting. The 
proportion of new and previously treated TB patients with complete TB treatment was estimated 
among new and previously treated TB cases by dividing the number of TB cases with documented 
treatment outcome success by the total number of patients with either treatment success or 
treatment default (loss to follow-up; defined by treatment interruption for at least two consecutive 
months) in that particular year (i.e. thereby excluding TB cases with treatment failure, transfer out 
or unknown treatment outcome from the denominator). 
To estimate parameters of HIV transmission in the community, we calibrated the model to an 
estimated HIV prevalence of 5·2% (4·0%-6·0%) among adults living in the study setting in 2002, 
assuming that HIV-prevalence was half of the 2002 antenatal survey estimate for the greater 
Tygerberg East Sub-district.44 
Calibration targets, data sources, and specified feasible ranges are shown in Tables S15-S17.  
 

U

U
U

U

U
U

U
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Table S15: Calibration Targets for 2002 

Target Value [Interval] Source 
Number of adults in the study setting 25,903 City of Cape Town* 

Number of children in the study setting 10,427 City of Cape Town* 

Percentage treatment-experienced, all adults 9·7 
[8·7-10·9] 

8 

Percentage prevalent TB, treatment-naive 
adults 

0·51 
[0·26-0·76] 

8 

Percentage prevalent TB, treatment-
experienced adults 

2·99 
[1·14-4·77] 

8 
 
* Unpublished end-of-year estimates (community level) from the 2001 South Africa population census provided by the City of Cape Town. 
 
 
 
 
 
  
 
Table S16: Time-varying calibration targets (2002 -2008) 

Target 
                                               

Value [Interval] 
Source 

2002 2003 2004 2005 2006 2007 2008 

Number of treatment-naïve 
adults starting TB treatment 172 234 200 224 216 233 210 TB treatment 

register database 6 
Number of treatment-
experienced adults starting 
TB treatment 

105 119 130 109 130 126 137 TB treatment 
register database 6 

Number of notified TB cases, 
children 82 60 66 69 73 77 69 TB treatment 

register database 6 
Percentage HIV-positive, all 
adults 

5·2 
[4-6] 

- 
[4-6] 

- 
[4-6] 

- 
[4-6] 

- 
[4-6] 

- 
[4-6] 

- 
[4-6] estimated from 44 

 
 
Table S17: Specified feasible ranges for calibration targets 

Target Feasible Range 
Number of adults in the study setting 24,000 - 30,000 
Number of children in the study setting 10,000 - 12,500 
Percentage treatment-experienced, all adults 5 - 15 
Percentage prevalent TB, treatment-naive adults 0 - 1·0 
Percentage prevalent TB, treatment-experienced adults 0 - 6·0 
Percentage HIV-positive, all adults 2·6 - 10·4 
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S5.2. Calibration procedure 
The goal of model calibration is to use the observations gathered throughout the epidemic to reduce 
the uncertainty around model input parameters. We used a Bayesian calibration approach45 where 
the likelihood of observations in Tables S15-16 are measured using the probability distributions 
described below. For a given simulated trajectory:  

1. The likelihood of the observed adult population size in each year (Table S15) is measured by a 
normal distribution with mean equal to the adult population size generated by the simulated 
trajectory. In the absence of sampling distribution for the estimated population size, we 
approximated the standard division of these normal distributions by 0.05𝑁7/𝑧M_`/N where 𝑁7 is 
the adult population size in year 𝑡 and 𝑧M_`/N is the (1 − 𝛼/2) upper critical value of a standard 
normal distribution. We chose 𝛼 = 0.05 (𝑧M_L.Lb/N=1.96). The likelihood of observed population 
of children is measured using the same approach. 

2. The likelihood of observed prevalence of treatment-experienced adults is measured by a binomial 
distribution where the number of trials is set to the number of population-based survey 
participants and the probability of success is set to the prevalence of treatment-experienced adults 
projected by the simulated trajectory. We approximate the number of survey participants from 

the reported confidence intervals [𝐿, 𝑈] (see Table S15) by solving e_f
N
= 𝑧M_`/Ng

M
h
𝑝̂(1 − 𝑝̂)	 

for 𝑛, where  𝑝̂ is the estimated prevalence provided in Table S15. The likelihood of observed 
HIV prevalence, percentage prevalent TB among treatment-naive adults and percentage prevalent 
TB among treatment-experienced adults are calculated using the approach described above.  

3. The likelihood of the observed number of treatment-naïve adults starting TB treatment in each 
year (Table S16) is measured by a binomial distribution where the number of trials is set to the 
population size of treatment-naïve adults produced by the simulated trajectory and the probability 
of success is set to proportion of treatment-naïve adults who started TB treatment in that year of 
the simulation. The likelihoods of the observed number of treatment-experienced adults starting 
TB treatment and the number of notified cases of pediatric TB are calculated in the same way.  

 Outcome definitions and data analysis 

We projected trajectories of TB incidence, prevalence and mortality. Incident TB was defined in 
our model as the number of adults and children, regardless of treatment history and HIV status, 
who transitioned into any of the infectious TB compartments; individuals remaining infectious 
after incomplete treatment were not counted in incidence estimates. Prevalent TB was defined as 
the number of adults and children in any of the infectious compartments at a particular point in 
time. TB mortality was defined as the number of adults and children who died while either in any 
of the infectious or TB treatment compartments.  
Best estimates of incidence, prevalence and mortality were derived by calculating the mean of 
values projected from the 1,000 sampled model trajectories. We calculated 95% percent 
uncertainty intervals representing the 2·5th and 97·5th percentiles of the 1,000 sampled 
trajectories. The impact of both interventions was defined as the cumulative number of incident 
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and prevalent TB cases and TB deaths that was averted in the population (compared to the baseline 
scenario of no targeted interventions) during a 10-year period (2016 - 2025). 
 

 Posterior estimates for the natural history of TB by history of TB 
treatment 

Posterior estimates for parameters describing the natural history of TB among treatment-
experienced and treatment-naïve people are shown in Figures S3-S6. 
 

 Sensitivity and scenario analyses 

Detailed results for the sensitivity analysis as described in the main document are shown in Table 
S18 and Figure S7(A). Results from additional scenario analyses are illustrated in Figures S7(B 
und C), S8 and S9. 
 

Table S18: Sensitivity analysis: Partial Rank Correlation Coefficients (PRCC) 
Model parameter PRCC P-Value 
Demographics 
Annual per capita birth rate  -0·042 0·176 
Annual natural death rate among children (<15 years) -0·126 <0·001 
Annual natural death rate among adults (≥15 years) 0·001 0·977 
Natural death rate ratio, TB treatment-experienced adults to treatment-naïve adults -0·459 <0·001 
Probability of Fast Progression to Active TB Upon Primary Infection 
Adults, susceptible/treatment-naïve/HIV- -0·273 <0·001 
Adults, susceptible/treatment-naïve/HIV+/non-immunocompromised 0·033 0·305 
Adults, susceptible/treatment-naïve/HIV+/immunocompromised -0·064 0·045 
Children, susceptible 0·043 0·175 
Rate of Reactivation of latent TB infection 
Adults, latently infected/treatment-naïve/HIV- -0·220 <0·001 
Adults, latently infected/treatment-naïve/HIV+/non-immunocompromised -0·109 0·001 
Adults, latently infected/treatment-naïve/HIV+/immunocompromised 0·088 0·006 
Children, latently infected 0·011 0·739 
Percent Reduction in Susceptibility due to Partial Immunity afforded by Prior Infection (treatment-naïve) 
Adults, latently infected/HIV- 0·277 <0·001 
Adults, latently infected/HIV+/non-immunocompromised 0·076 0·016 
Adults, latently infected/HIV+/immunocompromised 0·002 0·945 
Rate of Natural Recovery among Undetected Active TB Cases 
Adults, infectious/treatment-naïve/HIV- 0·036 0·258 
Adults, infectious/treatment-naïve/HIV+/non-immunocompromised -0·035 0·269 
Adults, infectious/ prior complete treatment/HIV- -0·082 0·010 
Adults, infectious/prior complete treatment/HIV+/immunocompromised -0·032 0·315 
Adults, infectious/ prior incomplete treatment/HIV- 0·107 0·001 
Adults, infectious/prior incomplete treatment/HIV+/immunocompromised -0·035 0·269 
Children, infectious -0·216 <0·001 
Percent Reduction in Susceptibility due to Partial immunity after (treated) active TB 
Adults, latently infected/treatment-experienced/HIV- -0·041 0·200 
Adults, latently infected/ treatment-experienced/HIV+/non-immunocompromised 0·115 <0·001 
Adults, latently infected/ treatment-experienced/HIV+/immunocompromised -0·076 0·017 
Adults, latently infected/ prior complete or incomplete treatment/HIV+/ART -0·059 0·064 
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Rate of Reactivation of active TB after treatment 
Adults, prior complete treatment/HIV- 0·507 <0·001 
Adults, prior incomplete treatment/HIV- 0·114 <0·001 
Adults, prior complete treatment /HIV+/non-immunocompromised 0·008 0·805 
Adults, prior incomplete treatment /HIV+/non-immunocompromised 0·121 <0·001 
Adults, prior complete treatment/HIV+/ immunocompromised -0·112 <0·001 
Adults, susceptible/ prior incomplete treatment /HIV+/immunocompromised 0·134 <0·001 
Probability of Persistent Active TB Following Incomplete Treatment 
Adults, prior incomplete treatment/HIV- -0·061 0·055 
Adults, prior incomplete treatment/HIV+/non-immunocompromised 0·130 <0·001 
Adults, prior incomplete treatment/ HIV+/immunocompromised 0·108 0·001 
Adults, prior incomplete treatment/ HIV+/ART 0·092 0·004 
Baseline time between disease onset and detection (years) 
Adults, infectious/treatment-naïve/HIV-  0·018 0·575 
Adults, infectious/treatment-naïve/HIV+/non-immunocompromised 0·227 <0·001 
Adults, infectious/treatment-naïve/HIV+/immunocompromised 0·065 0·041 
Adults, infectious/treatment-naïve/HIV+/ART -0·064 0·043 
Adults, infectious/prior complete treatment/HIV-  0·508 <0·001 
Adults, infectious/prior complete treatment /HIV+/non-immunocompromised -0·233 <0·001 
Adults, infectious/prior complete treatment /HIV+/immunocompromised -0·021 0·502 
Adults, infectious/prior complete treatment /HIV+/ ART 0·118 <0·001 
Adults, infectious/prior incomplete treatment/HIV-  -0·030 0·350 
Adults, infectious/prior incomplete treatment /HIV+/non-immunocompromised -0·011 0·729 
Adults, infectious/prior incomplete treatment /HIV+/immunocompromised 0·068 0·033 
Adults, infectious/prior incomplete treatment /HIV+/ ART 0·038 0·232 
Children, infectious 0·104 0·001 
Rate of TB-associated (excess) mortality rate, untreated TB 
Adults, infectious/any or no treatment history/HIV- 0·093 0·003 
Adults, infectious/any or no treatment history/HIV+/non-immunocompromised -0·090 0·004 
Adults, infectious/any or no treatment history/HIV+/ immunocompromised 0·254 <0·001 
Adults, infectious/any or no treatment history/HIV+/ART -0·085 0·007 
Rate of TB-associated (excess) mortality rate, on TB treatment 
Adults, infectious/any or no treatment history/HIV- 0·028 0·376 
Adults, infectious/any or no treatment history/HIV+/non-immunocompromised 0·018 0·560 
Adults, infectious/any or no treatment history/HIV+/immunocompromised 0·374 <0·001 
Adults, infectious/any or no treatment history /HIV+/ART -0·131 <0·001 
HIV-progression, HIV-associated mortality and effect of ART 
Annual rate of progression to immunocompromised HIV from non-immunocompromised HIV 0·102 0·001 
Annual non-immunocompromised HIV-associated excess mortality rate 0·035 0·270 
Annual immunocompromised HIV-associated excess mortality rate 0·095 0·003 
Annual HIV-associated excess mortality rate while on ART 0·223 <0·001 
Effectiveness of ART in reversing effect of HIV on TB natural history (compared to the 
HIV+/non-immunocompromised state, excluding mortality) -0·061 0·054 

Efficacy of 2°IPT 
Reduction in TB reactivation rate 0·280 <0·001 
Reduction in probability of fast progression to TB after reinfection 0·019 0·558 
Susceptibility to infection 
Ratio: susceptible Children to HIV-negative, susceptible adults 0·358 <0·001 
Ratio: latently infected children to HIV-negative, susceptible adults 0·143 <0·001 
Infectiousness 
Adults, treatment-naïve, HIV- -0·339 <0·001 
Adults, treatment-naïve, HIV+/non-immunocompromised 0·109 0·001 
Ratio: adults, HIV+/immunocompromised to adults, HIV+/non-immunocompromised -0·003 0·926 
Ratio: adults, HIV+/on ART to adults, HIV+/non-immunocompromised 0·050 0·117 
Ratio: children to treatment-naïve adults -0·087 0·006 
Ratio: adults, treatment-experienced to adults, treatment-naïve 0·043 0·172 
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Figure S1: Model subcomponent for children aged 0-14 years  
Not shown are mortality rates; grey dashed arrows indicate age transition into the corresponding compartments of the 
adult component of the model (see Figure 1, main manuscript) 
 
 

 
Figure S2. Projected coverage of antiretroviral treatment (ART) among HIV infected adults, 2004 - 2025 
Panel A: treatment-naive adults 
Panel B: treatment-experienced adults 
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Figure S3: Posterior distribution for the relative susceptibility to reinfection among treatment-naïve, latently 
infected adults using the susceptibility to primary infection among treatment-naïve, susceptible adults as a 
reference (assuming partial immunity afforded by prior infection) 
 

 
Figure S4: Posterior distribution for the relative susceptibility to reinfection among treatment-experienced 
adults using the susceptibility to primary infection among treatment-naïve, susceptible adults as a reference 
(assuming partial immunity afforded by prior infection) 
 

 
Figure S5: Posterior distribution for the annual reactivation rate among HIV-negative latently-infected adults, 
by history of previous TB treatment 
 

 
Figure S6: Posterior distribution for the probability of fast progression to active TB upon primary infection by 
status of HIV co-infection, treatment-naïve, susceptible adults 
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Figure S7: Sensitivity and scenario analyses: Partial rank correlation coefficients for the top 10 model 
parameters with the greatest influence towards the number of TB cases averted through TACF and 2°IPT 
interventions (5A); expected number of TB cases averted (5B) and deaths averted (5C) as the result of TACF 
and 2°IPT interventions with respect to the baseline scenario for varying TACF intervals and probabilities of 
enrollment in 2°IPT after the completion of TB treatment.  Note that the space between data points for different 
series (5B/5C) is intended to improve readability and is not proportional to scale of the x-axis; error bars represent 
95% uncertainty intervals. 
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Figure S8: Expected number of TB cases (Fig. A) and deaths (Fig. B) averted with respect to the baseline 
scenario as the result of annual TACF and 2°IPT when the probability of annual 2°IPT drop-out varied 
between 5% and 25%. Series represent different probabilities of receiving 2°IPT after completing TB treatment 
(50%-90%; see legend); space between data points of different series is for better readability and not proportional to 
scale of the x-axis; error bars represent 95% uncertainty intervals. 
 
 
 

 
Figure S9: Expected number of TB cases (Fig. A) and deaths (Fig. B) averted as the result of annual TACF and 
2°IPT interventions with respect to a scenario where the TB force-of-infection (FOI) is reduced by 50% 
compared to the TB force-of-infection estimated for our study population. Space between data points of different 
series is for better readability and not proportional to scale of the x-axis; error bars represent 95% uncertainty intervals. 
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